BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27704791)

  • 1. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity.
    Yli-Pirilä P; Copolovici L; Kännaste A; Noe S; Blande JD; Mikkonen S; Klemola T; Pulkkinen J; Virtanen A; Laaksonen A; Joutsensaari J; Niinemets Ü; Holopainen JK
    Environ Sci Technol; 2016 Nov; 50(21):11501-11510. PubMed ID: 27704791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests.
    Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra.
    Rieksta J; Li T; Michelsen A; Rinnan R
    Glob Chang Biol; 2021 Oct; 27(20):5030-5042. PubMed ID: 34185349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata).
    Ryde I; Li T; Rieksta J; Dos Santos BM; Neilson EHJ; Gericke O; Jepsen JU; Bork LRH; Holm HS; Rinnan R
    Tree Physiol; 2021 Jun; 41(6):1019-1033. PubMed ID: 33601421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect Herbivory Strongly Modifies Mountain Birch Volatile Emissions.
    Rieksta J; Li T; Junker RR; Jepsen JU; Ryde I; Rinnan R
    Front Plant Sci; 2020; 11():558979. PubMed ID: 33193483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting responses of silver birch VOC emissions to short- and long-term herbivory.
    Maja MM; Kasurinen A; Yli-Pirilä P; Joutsensaari J; Klemola T; Holopainen T; Holopainen JK
    Tree Physiol; 2014 Mar; 34(3):241-52. PubMed ID: 24627262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra.
    Li T; Holst T; Michelsen A; Rinnan R
    Nat Plants; 2019 Jun; 5(6):568-574. PubMed ID: 31182843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile organic compounds emitted from silver birch of different provenances across a latitudinal gradient in Finland.
    Maja MM; Kasurinen A; Holopainen T; Kontunen-Soppela S; Oksanen E; Holopainen JK
    Tree Physiol; 2015 Sep; 35(9):975-86. PubMed ID: 26093370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect Herbivory Caused Plant Stress Emissions Increases the Negative Radiative Forcing of Aerosols.
    Holopainen E; Kokkola H; Faiola C; Laakso A; Kühn T
    J Geophys Res Atmos; 2022 Jul; 127(13):e2022JD036733. PubMed ID: 36249538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage.
    Copolovici L; Kännaste A; Remmel T; Vislap V; Niinemets U
    J Chem Ecol; 2011 Jan; 37(1):18-28. PubMed ID: 21181243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra.
    Rieksta J; Li T; Davie-Martin CL; Aeppli LCB; Høye TT; Rinnan R
    Plant Environ Interact; 2023 Feb; 4(1):23-35. PubMed ID: 37284597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols.
    Kourtchev I; Giorio C; Manninen A; Wilson E; Mahon B; Aalto J; Kajos M; Venables D; Ruuskanen T; Levula J; Loponen M; Connors S; Harris N; Zhao D; Kiendler-Scharr A; Mentel T; Rudich Y; Hallquist M; Doussin JF; Maenhaut W; Bäck J; Petäjä T; Wenger J; Kulmala M; Kalberer M
    Sci Rep; 2016 Oct; 6():35038. PubMed ID: 27733773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moth herbivory enhances resource turnover in subarctic mountain birch forests?
    Kaukonen M; Ruotsalainen AL; Wäli PR; Männistö MK; Setälä H; Saravesi K; Huusko K; Markkola A
    Ecology; 2013 Feb; 94(2):267-72. PubMed ID: 23691644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of volatile organic compound emissions from subarctic tundra under global warming.
    Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R
    Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial responses of two herbivore groups to a geometrid larva on mountain birch.
    Riihimäki J; Kaitaniemi P; Ruohomäki K
    Oecologia; 2003 Jan; 134(2):203-9. PubMed ID: 12647161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid herbivore-induced changes in mountain birch phenolics and nutritive compounds and their effects on performance of the major defoliator, Epirrita autumnata.
    Lempa K; Agrawal AA; Salminen JP; Turunen T; Ossipov V; Ossipova S; Haukioja E; Pihlaja K
    J Chem Ecol; 2004 Feb; 30(2):303-21. PubMed ID: 15112726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An amorphous solid state of biogenic secondary organic aerosol particles.
    Virtanen A; Joutsensaari J; Koop T; Kannosto J; Yli-Pirilä P; Leskinen J; Mäkelä JM; Holopainen JK; Pöschl U; Kulmala M; Worsnop DR; Laaksonen A
    Nature; 2010 Oct; 467(7317):824-7. PubMed ID: 20944744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring.
    Kozlov MV; Zverev V; Zvereva EL
    Sci Total Environ; 2017 Dec; 601-602():802-811. PubMed ID: 28578238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From plants to birds: higher avian predation rates in trees responding to insect herbivory.
    Mäntylä E; Alessio GA; Blande JD; Heijari J; Holopainen JK; Laaksonen T; Piirtola P; Klemola T
    PLoS One; 2008 Jul; 3(7):e2832. PubMed ID: 18665271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites.
    Swanson L; Li T; Rinnan R
    Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.