These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27704793)

  • 21. Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption.
    Gypser S; Hirsch F; Schleicher AM; Freese D
    J Environ Sci (China); 2018 Aug; 70():175-189. PubMed ID: 30037404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.
    ThomasArrigo LK; Mikutta C; Byrne J; Kappler A; Kretzschmar R
    Environ Sci Technol; 2017 Jun; 51(12):6897-6907. PubMed ID: 28590131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation.
    Hockmann K; Karimian N; Schlagenhauff S; Planer-Friedrich B; Burton ED
    Environ Sci Technol; 2021 Apr; 55(8):4954-4963. PubMed ID: 33710876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide.
    Wu L; Beard BL; Roden EE; Johnson CM
    Environ Sci Technol; 2011 Mar; 45(5):1847-52. PubMed ID: 21294566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption of phosphate and silicate alters dissolution kinetics of poorly crystalline iron (oxyhydr)oxide.
    Kraal P; van Genuchten CM; Behrends T; Rose AL
    Chemosphere; 2019 Nov; 234():690-701. PubMed ID: 31234086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.
    Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D
    Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.
    Soltermann D; Marques Fernandes M; Baeyens B; Dähn R; Joshi PA; Scheinost AC; Gorski CA
    Environ Sci Technol; 2014; 48(15):8688-97. PubMed ID: 24930689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption and heterogeneous oxidation of As(III) on ferrihydrite.
    Zhao Z; Jia Y; Xu L; Zhao S
    Water Res; 2011 Dec; 45(19):6496-504. PubMed ID: 22000059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III).
    Thoral S; Rose J; Garnier JM; Van Geen A; Refait MP; Traverse A; Fonda E; Nahon D; Bottero JY
    Environ Sci Technol; 2005 Dec; 39(24):9478-85. PubMed ID: 16475325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depassivation of aged Fe0 by ferrous ions: implications to contaminant degradation.
    Liu T; Li X; Waite TD
    Environ Sci Technol; 2013 Dec; 47(23):13712-20. PubMed ID: 24195471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling coupled kinetics of arsenic adsorption/desorption and oxidation in ferrihydrite-Mn(II)/manganese (oxyhydr)oxides systems.
    You Y; Liang Y; Peng S; Lan S; Lu G; Feng X; Shi Z
    Chemosphere; 2020 Apr; 244():125517. PubMed ID: 32050332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron and phosphorus speciation in Fe-conditioned membrane bioreactor activated sludge.
    Wu H; Ikeda-Ohno A; Wang Y; Waite TD
    Water Res; 2015 Jun; 76():213-26. PubMed ID: 25900910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling.
    Borer P; Sulzberger B; Hug SJ; Kraemer SM; Kretzschmar R
    Environ Sci Technol; 2009 Mar; 43(6):1864-70. PubMed ID: 19368184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoinduced transformation of ferrihydrite in the presence of aqueous sulfite and its influence on the repartitioning of Cd.
    Qiu J; Hou X; Ren Y; Liu C; Meng F; Lee JF; Lin YJ; Huang Z; Ma H; Shi Z; Feng C
    Water Res; 2023 Mar; 231():119607. PubMed ID: 36680820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands.
    ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2019 Dec; 53(23):13636-13647. PubMed ID: 31718167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal intensification of microbial Fe(II)/Fe(III) redox cycling in a pristine shallow sand aquifer on the Canadian Shield.
    Shirokova VL; Enright AML; Kennedy CB; Ferris FG
    Water Res; 2016 Dec; 106():604-612. PubMed ID: 27780075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sunlight-Induced Interfacial Electron Transfer of Ferrihydrite under Oxic Conditions: Mineral Transformation and Redox Active Species Production.
    Shu Z; Pan Z; Wang X; He H; Yan S; Zhu X; Song W; Wang Z
    Environ Sci Technol; 2022 Oct; 56(19):14188-14197. PubMed ID: 36098650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.