These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27704794)

  • 1. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes.
    Barman P; Faponle AS; Vardhaman AK; Angelone D; Löhr AM; Browne WR; Comba P; Sastri CV; de Visser SP
    Inorg Chem; 2016 Oct; 55(20):10170-10181. PubMed ID: 27704794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
    Rice DB; Massie AA; Jackson TA
    Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the Generation of High-Valent Cobalt Species and Chlorine Dioxide in the Co
    Su R; Li N; Liu Z; Song X; Liu W; Gao B; Zhou W; Yue Q; Li Q
    Environ Sci Technol; 2023 Feb; 57(5):1882-1893. PubMed ID: 36607701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin-Derived Non-Heme Iron and Manganese Complexes: Catalysts for the On-Demand Production of Chlorine Dioxide in Water under Mild Conditions.
    Champ TB; Jang JH; Lee JL; Wu G; Reynolds MA; Abu-Omar MM
    Inorg Chem; 2021 Mar; 60(5):2905-2913. PubMed ID: 33544576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions.
    Nam W
    Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does hydrogen-bonding donation to manganese(IV)-oxo and iron(IV)-oxo oxidants affect the oxygen-atom transfer ability? A computational study.
    Latifi R; Sainna MA; Rybak-Akimova EV; de Visser SP
    Chemistry; 2013 Mar; 19(12):4058-68. PubMed ID: 23362213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-heme manganese catalysts for on-demand production of chlorine dioxide in water and under mild conditions.
    Hicks SD; Kim D; Xiong S; Medvedev GA; Caruthers J; Hong S; Nam W; Abu-Omar MM
    J Am Chem Soc; 2014 Mar; 136(9):3680-6. PubMed ID: 24498903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range electron transfer triggers mechanistic differences between iron(IV)-oxo and iron(IV)-imido oxidants.
    Kumar S; Faponle AS; Barman P; Vardhaman AK; Sastri CV; Kumar D; de Visser SP
    J Am Chem Soc; 2014 Dec; 136(49):17102-15. PubMed ID: 25392052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity.
    Yin G
    Acc Chem Res; 2013 Feb; 46(2):483-92. PubMed ID: 23194251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles.
    Ye W; Ho DM; Friedle S; Palluccio TD; Rybak-Akimova EV
    Inorg Chem; 2012 May; 51(9):5006-21. PubMed ID: 22534174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron species activating chlorite: Neglected selective oxidation for water treatment.
    Xu Q; Li Z; Liu F; You H; Xie B
    Environ Sci Ecotechnol; 2023 Apr; 14():100225. PubMed ID: 36507056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerted dismutation of chlorite ion: water-soluble iron-porphyrins as first generation model complexes for chlorite dismutase.
    Zdilla MJ; Lee AQ; Abu-Omar MM
    Inorg Chem; 2009 Mar; 48(5):2260-8. PubMed ID: 19138154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.
    Leigh JK; Rajput J; Richardson DE
    Inorg Chem; 2014 Jul; 53(13):6715-27. PubMed ID: 24927381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective synthesis of surface Fe
    Li M; Li H; Ling C; Shang H; Wang H; Zhao S; Liang C; Mao C; Guo F; Zhou B; Ai Z; Zhang L
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2304562120. PubMed ID: 37695890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants.
    Pan Z; Zhang R; Newcomb M
    J Inorg Biochem; 2006 Apr; 100(4):524-32. PubMed ID: 16500709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.