These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 27704806)
1. Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea-A Baltic Sea Case Study. Soerensen AL; Schartup AT; Gustafsson E; Gustafsson BG; Undeman E; Björn E Environ Sci Technol; 2016 Nov; 50(21):11787-11796. PubMed ID: 27704806 [TBL] [Abstract][Full Text] [Related]
2. Organic matter drives high interannual variability in methylmercury concentrations in a subarctic coastal sea. Soerensen AL; Schartup AT; Skrobonja A; Björn E Environ Pollut; 2017 Oct; 229():531-538. PubMed ID: 28646796 [TBL] [Abstract][Full Text] [Related]
3. Spatial and temporal variations of total and methylmercury concentrations in plankton from a mercury-contaminated and eutrophic reservoir in Guizhou Province, China. Wang Q; Feng X; Yang Y; Yan H Environ Toxicol Chem; 2011 Dec; 30(12):2739-47. PubMed ID: 21953504 [TBL] [Abstract][Full Text] [Related]
4. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters. Ji X; Liu C; Pan G Ecotoxicol Environ Saf; 2020 Jan; 188():109888. PubMed ID: 31706242 [TBL] [Abstract][Full Text] [Related]
5. Temporal variation of mercury and methyl mercury in water and accumulation by phytoplankton in the eutrophic estuary, northern Taiwan. Fang TH; Chang FW Mar Pollut Bull; 2024 Aug; 205():116624. PubMed ID: 38959573 [TBL] [Abstract][Full Text] [Related]
6. Effect of eutrophication on mercury, selenium, and essential fatty acids in bighead carp (Hypophthalmichthys nobilis) from reservoirs of eastern China. Razavi NR; Arts MT; Qu M; Jin B; Ren W; Wang Y; Campbell LM Sci Total Environ; 2014 Nov; 499():36-46. PubMed ID: 25173860 [TBL] [Abstract][Full Text] [Related]
7. An examination of the factors influencing the bioaccumulation of methylmercury at the base of the estuarine food web. Mason RP; Buckman KL; Seelen EA; Taylor VF; Chen CY Sci Total Environ; 2023 Aug; 886():163996. PubMed ID: 37164101 [TBL] [Abstract][Full Text] [Related]
8. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles. Ji X; Liu C; Zhang M; Yin Y; Pan G Water Res; 2020 Apr; 173():115563. PubMed ID: 32059129 [TBL] [Abstract][Full Text] [Related]
9. Impacts of autochthonous dissolved organic matter on the accumulation of methylmercury by phytoplankton and zooplankton in a eutrophic coastal ecosystem. Shao B; Li Z; Wu Z; Yang N; Cui X; Lin H; Liu Y; He W; Zhao Y; Wang X; Tong Y Environ Pollut; 2023 Nov; 336():122457. PubMed ID: 37633436 [TBL] [Abstract][Full Text] [Related]
10. Methylmercury cycling in the Bohai Sea and Yellow Sea: Reasons for the low system efficiency of methylmercury production. Chen L; Cheng G; Zhou Z; Liang Y; Ci Z; Yin Y; Liu G; Cai Y; Li Y Water Res; 2024 Jul; 258():121792. PubMed ID: 38772318 [TBL] [Abstract][Full Text] [Related]
11. Influence of eutrophication on the distribution of total mercury and methylmercury in hydroelectric reservoirs. Meng B; Feng XB; Chen CX; Qiu GL; Sommar J; Guo YN; Liang P; Wan Q J Environ Qual; 2010; 39(5):1624-35. PubMed ID: 21043268 [TBL] [Abstract][Full Text] [Related]
12. Mercury bioaccumulation in zooplankton and its relationship with eutrophication in the waters in the karst region of Guizhou Province, Southwest China. Yao C; He T; Xu Y; Ran S; Qian X; Long S Environ Sci Pollut Res Int; 2020 Mar; 27(8):8596-8610. PubMed ID: 31907806 [TBL] [Abstract][Full Text] [Related]
13. The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: a case study from Hongfeng Reservoir, Guizhou, China. He T; Feng X; Guo Y; Qiu G; Li Z; Liang L; Lu J Environ Pollut; 2008 Jul; 154(1):56-67. PubMed ID: 18158204 [TBL] [Abstract][Full Text] [Related]
14. Algal Organic Matter Drives Methanogen-Mediated Methylmercury Production in Water from Eutrophic Shallow Lakes. Lei P; Zhang J; Zhu J; Tan Q; Kwong RWM; Pan K; Jiang T; Naderi M; Zhong H Environ Sci Technol; 2021 Aug; 55(15):10811-10820. PubMed ID: 34236181 [TBL] [Abstract][Full Text] [Related]
15. Comparison of mercury speciation and distribution in the water column and sediments between the algal type zone and the macrophytic type zone in a hypereutrophic lake (Dianchi Lake) in Southwestern China. Wang S; Zhang M; Li B; Xing D; Wang X; Wei C; Jia Y Sci Total Environ; 2012 Feb; 417-418():204-13. PubMed ID: 22265601 [TBL] [Abstract][Full Text] [Related]
16. Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. Wang F; Macdonald RW; Armstrong DA; Stern GA Environ Sci Technol; 2012 Nov; 46(21):11821-8. PubMed ID: 23025753 [TBL] [Abstract][Full Text] [Related]
17. Geochemical and Dietary Drivers of Mercury Bioaccumulation in Estuarine Benthic Invertebrates. Jonsson S; Liem-Nguyen V; Andersson A; Skyllberg U; Nilsson MB; Lundberg E; Björn E Environ Sci Technol; 2022 Jul; 56(14):10141-10148. PubMed ID: 35770966 [TBL] [Abstract][Full Text] [Related]
18. World war munitions as a source of mercury in the southwest Baltic Sea. Gosnell KJ; Heimbürger-Boavida LE; Beck AJ; Ukotije-Ikwut PR; Achterberg EP Chemosphere; 2023 Dec; 345():140522. PubMed ID: 37879375 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the influence of seasonal stratification on mercury methylation rates in the water column and sediment in a contaminated section of a western U.S.A. reservoir. Millard G; Eckley CS; Luxton TP; Krabbenhoft D; Goetz J; McKernan J; DeWild J Environ Pollut; 2023 Jan; 316(Pt 1):120485. PubMed ID: 36279994 [TBL] [Abstract][Full Text] [Related]
20. Mercury species in dab (Limanda limanda) from the North Sea, Baltic Sea and Icelandic waters in relation to host-specific variables. Lang T; Kruse R; Haarich M; Wosniok W Mar Environ Res; 2017 Mar; 124():32-40. PubMed ID: 27063847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]