These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2770556)

  • 21. Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study.
    Lamfon H; Porter SR; McCullough M; Pratten J
    J Antimicrob Chemother; 2004 Feb; 53(2):383-5. PubMed ID: 14729749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlorhexidine-induced ultrastructural alterations in oral biofilm.
    Vitkov L; Hermann A; Krautgartner WD; Herrmann M; Fuchs K; Klappacher M; Hannig M
    Microsc Res Tech; 2005 Oct; 68(2):85-9. PubMed ID: 16228984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of chlorhexidine, iodine, and 5,7-dichloro-8-hydroxyquinoline on the bacterial composition of rat plaque in vivo.
    Schaeken MJ; van den Kieboom CW; Franken HC; de Jong MH; van der Hoeven JS
    Caries Res; 1984; 18(5):440-6. PubMed ID: 6592046
    [No Abstract]   [Full Text] [Related]  

  • 24. Interaction between GIC and S. sanguis biofilms: antibacterial properties and changes of surface hardness.
    Hengtrakool C; Pearson GJ; Wilson M
    J Dent; 2006 Sep; 34(8):588-97. PubMed ID: 16540228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method to study sustained antimicrobial activity of rinse and dentifrice components on biofilm viability in vivo.
    van der Mei HC; White DJ; Atema-Smit J; van de Belt-Gritter E; Busscher HJ
    J Clin Periodontol; 2006 Jan; 33(1):14-20. PubMed ID: 16367850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emergence of antibiotic resistant Streptococcus sanguis in dental plaque of children after frequent antibiotic therapy.
    Erickson PR; Herzberg MC
    Pediatr Dent; 1999; 21(3):181-5. PubMed ID: 10355009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Comparison of the activity against Streptococcus mutans of a chlorhexidine-based antiseptic as a suspension or as a biofilm].
    Jacquelin LF; Carquin J; Le Magrex E; Choisy C
    Pathol Biol (Paris); 1992 May; 40(5):518-22. PubMed ID: 1495837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The effect of sodium doecyl sulfate on Streptococcus sanguis biofilm].
    Ma R; Zhu M; Liu Z
    Shanghai Kou Qiang Yi Xue; 2005 Oct; 14(5):507-10. PubMed ID: 16288332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xylitol and the bactericidal effect of chlorhexidine and fluoride on Streptococcus mutans and Streptococcus sanguis.
    Nuuja T; Meurman JH; Torkko H
    Acta Odontol Scand; 1993 Apr; 51(2):109-14. PubMed ID: 8498160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The in vitro effects of chlorhexidine on subgingival plaque bacteria.
    Stanley A; Wilson M; Newman HN
    J Clin Periodontol; 1989 Apr; 16(4):259-64. PubMed ID: 2715364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection for high-level resistance by chronic triclosan exposure is not universal.
    McBain AJ; Ledder RG; Sreenivasan P; Gilbert P
    J Antimicrob Chemother; 2004 May; 53(5):772-7. PubMed ID: 15117935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitization of Actinomyces naeslundii and Streptococcus sanguis in biofilms and suspensions to acid damage by fluoride and other weak acids.
    Phan TN; Reidmiller JS; Marquis RE
    Arch Microbiol; 2000 Oct; 174(4):248-55. PubMed ID: 11081793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro development of chlorhexidine resistance in Streptococcus sanguis and its transmissibility by genetic transformation.
    Westergren G; Emilson CG
    Scand J Dent Res; 1980 Jun; 88(3):236-43. PubMed ID: 6932090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation.
    Houari A; Di Martino P
    Lett Appl Microbiol; 2007 Dec; 45(6):652-6. PubMed ID: 17944843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol.
    Koo H; Hayacibara MF; Schobel BD; Cury JA; Rosalen PL; Park YK; Vacca-Smith AM; Bowen WH
    J Antimicrob Chemother; 2003 Nov; 52(5):782-9. PubMed ID: 14563892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytotherapeutic prevention of dental biofilm formation.
    Rasooli I; Shayegh S; Taghizadeh M; Astaneh SD
    Phytother Res; 2008 Sep; 22(9):1162-7. PubMed ID: 18729251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructural differences between single-species and dual-species biofilms of Streptococcus mutans and Veillonella parvula, before and after exposure to chlorhexidine.
    Kara D; Luppens SB; van Marle J; Ozok R; ten Cate JM
    FEMS Microbiol Lett; 2007 Jun; 271(1):90-7. PubMed ID: 17403046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine.
    Pratten J; Smith AW; Wilson M
    J Antimicrob Chemother; 1998 Oct; 42(4):453-9. PubMed ID: 9818743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antiseptic activity of some antidental plaque chemicals on Streptococcus mutans biofilms.
    Le Magrex E; Jacquelin LF; Carquin J; Brisset L; Choisy C
    Pathol Biol (Paris); 1993 Apr; 41(4):364-8. PubMed ID: 8233636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of two antimicrobial agents on early in situ biofilm formation.
    Auschill TM; Hein N; Hellwig E; Follo M; Sculean A; Arweiler NB
    J Clin Periodontol; 2005 Feb; 32(2):147-52. PubMed ID: 15691343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.