BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 27705776)

  • 1. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the force field required for nucleus deformation during cell migration through constrictions.
    Estabrook ID; Thiam HR; Piel M; Hawkins RJ
    PLoS Comput Biol; 2021 May; 17(5):e1008592. PubMed ID: 34029312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments.
    Davidson PM; Sliz J; Isermann P; Denais C; Lammerding J
    Integr Biol (Camb); 2015 Dec; 7(12):1534-46. PubMed ID: 26549481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the nuclear deformation caused by changes in endothelial cell shape.
    Jean RP; Gray DS; Spector AA; Chen CS
    J Biomech Eng; 2004 Oct; 126(5):552-8. PubMed ID: 15648807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels.
    Scianna M; Preziosi L
    J Theor Biol; 2013 Jan; 317():394-406. PubMed ID: 23147234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics.
    Hobson CM; Kern M; O'Brien ET; Stephens AD; Falvo MR; Superfine R
    Mol Biol Cell; 2020 Jul; 31(16):1788-1801. PubMed ID: 32267206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic device for characterizing nuclear deformations.
    Hodgson AC; Verstreken CM; Fisher CL; Keyser UF; Pagliara S; Chalut KJ
    Lab Chip; 2017 Feb; 17(5):805-813. PubMed ID: 28116393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical model for the transendothelial migration of cancer cells.
    Arefi SMA; Tsvirkun D; Verdier C; Feng JJ
    Phys Biol; 2020 Mar; 17(3):036004. PubMed ID: 32015219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of actin dependent nuclear deformation in regulating early gene expression.
    Gupta S; Marcel N; Sarin A; Shivashankar GV
    PLoS One; 2012; 7(12):e53031. PubMed ID: 23285252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear Deformation During Neutrophil Migration at Sites of Inflammation.
    Salvermoser M; Begandt D; Alon R; Walzog B
    Front Immunol; 2018; 9():2680. PubMed ID: 30505310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local, transient tensile stress on the nuclear membrane causes membrane rupture.
    Zhang Q; Tamashunas AC; Agrawal A; Torbati M; Katiyar A; Dickinson RB; Lammerding J; Lele TP
    Mol Biol Cell; 2019 Mar; 30(7):899-906. PubMed ID: 30566037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay.
    Deveraux S; Allena R; Aubry D
    J Theor Biol; 2017 Dec; 435():62-77. PubMed ID: 28919399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery.
    Wang X; Liu H; Zhu M; Cao C; Xu Z; Tsatskis Y; Lau K; Kuok C; Filleter T; McNeill H; Simmons CA; Hopyan S; Sun Y
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29777038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic device reveals new insights into impairment of neutrophil transmigration in patients with sepsis.
    Qi Y; Wang H; Wu J; Wang R; Xu Z; Cui X; Liu Z
    Biosens Bioelectron; 2024 Sep; 260():116460. PubMed ID: 38843769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of nuclear mechanics in cell deformation under creeping flows.
    Serrano-Alcalde F; García-Aznar JM; Gómez-Benito MJ
    J Theor Biol; 2017 Nov; 432():25-32. PubMed ID: 28802825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.
    Lee H; Adams WJ; Alford PW; McCain ML; Feinberg AW; Sheehy SP; Goss JA; Parker KK
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1543-54. PubMed ID: 25908635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size.
    Cao X; Lin Y; Driscoll TP; Franco-Barraza J; Cukierman E; Mauck RL; Shenoy VB
    Biophys J; 2015 Nov; 109(9):1807-17. PubMed ID: 26536258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical principles of nuclear shaping and positioning.
    Lele TP; Dickinson RB; Gundersen GG
    J Cell Biol; 2018 Oct; 217(10):3330-3342. PubMed ID: 30194270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model of T-cell nuclear deformation by the cortical actin layer.
    Fabrikant G; Gupta S; Shivashankar GV; Kozlov MM
    Biophys J; 2013 Sep; 105(6):1316-23. PubMed ID: 24047982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.