These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 27705822)
1. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chopard A; Plante B; Benzaazoua M; Bouzahzah H; Marion P Chemosphere; 2017 Jan; 166():281-291. PubMed ID: 27705822 [TBL] [Abstract][Full Text] [Related]
2. The Effects of Galvanic Interactions with Pyrite on the Generation of Acid and Metalliferous Drainage. Qian G; Fan R; Short MD; Schumann RC; Li J; St C Smart R; Gerson AR Environ Sci Technol; 2018 May; 52(9):5349-5357. PubMed ID: 29608053 [TBL] [Abstract][Full Text] [Related]
3. Experimental oxidative dissolution of sphalerite in the Aznalcollar sludge and other pyritic matrices. Hita R; Torrent J; Bigham JM J Environ Qual; 2006; 35(4):1032-9. PubMed ID: 16738388 [TBL] [Abstract][Full Text] [Related]
4. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124 [TBL] [Abstract][Full Text] [Related]
5. Oxidative Dissolution of Sulfide Minerals in Single and Mixed Sulfide Systems under Simulated Acid and Metalliferous Drainage Conditions. Qian G; Fan R; Huang J; Pring A; Harmer SL; Zhang H; Rea MAD; Brugger J; Teasdale PR; Gibson CT; Schumann RC; Smart RSC; Gerson AR Environ Sci Technol; 2021 Feb; 55(4):2369-2380. PubMed ID: 33507750 [TBL] [Abstract][Full Text] [Related]
6. Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source. Wang S; Zhao Y; Li S Environ Sci Pollut Res Int; 2019 Sep; 26(25):25725-25732. PubMed ID: 31267388 [TBL] [Abstract][Full Text] [Related]
7. Silane-based coatings on the pyrite for remediation of acid mine drainage. Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590 [TBL] [Abstract][Full Text] [Related]
8. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Xiao Y; Liu X; Dong W; Liang Y; Niu J; Gu Y; Ma L; Hao X; Zhang X; Xu Z; Yin H Arch Microbiol; 2017 Jul; 199(5):757-766. PubMed ID: 28260145 [TBL] [Abstract][Full Text] [Related]
9. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Pérez-López R; Nieto JM; de Almodóvar GR Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643 [TBL] [Abstract][Full Text] [Related]
10. Biomining with bacteriophage: selectivity of displayed peptides for naturally occurring sphalerite and chalcopyrite. Curtis SB; Hewitt J; Macgillivray RT; Dunbar WS Biotechnol Bioeng; 2009 Feb; 102(2):644-50. PubMed ID: 18767194 [TBL] [Abstract][Full Text] [Related]
11. The Combined Effects of Galvanic Interaction and Silicate Addition on the Oxidative Dissolution of Pyrite: Implications for Acid and Metalliferous Drainage Control. Qian G; Fan R; Short MD; Schumann RC; Pring A; Gerson AR Environ Sci Technol; 2019 Oct; 53(20):11922-11931. PubMed ID: 31524385 [TBL] [Abstract][Full Text] [Related]
12. A contribution to improve the calculation of the acid generating potential of mining wastes. Chopard A; Benzaazoua M; Bouzahzah H; Plante B; Marion P Chemosphere; 2017 May; 175():97-107. PubMed ID: 28211340 [TBL] [Abstract][Full Text] [Related]
13. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Chandra AP; Gerson AR Adv Colloid Interface Sci; 2009 Jan; 145(1-2):97-110. PubMed ID: 18851843 [TBL] [Abstract][Full Text] [Related]
14. Acid production potentials of massive sulfide minerals and lead-zinc mine tailings: a medium-term study. Çelebi EE; Öncel MS; Kobya M Water Sci Technol; 2018 Jan; 77(1-2):260-268. PubMed ID: 29339625 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans. Kocaman AT; Cemek M; Edwards KJ Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502 [TBL] [Abstract][Full Text] [Related]
16. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions. Velásquez P; Leinen D; Pascual J; Ramos-Barrado JR; Grez P; Gómez H; Schrebler R; Del Río R; Córdova R J Phys Chem B; 2005 Mar; 109(11):4977-88. PubMed ID: 16863157 [TBL] [Abstract][Full Text] [Related]
17. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer. Cánovas CR; Macías F; Pérez-López R J Contam Hydrol; 2016 May; 188():29-43. PubMed ID: 26972101 [TBL] [Abstract][Full Text] [Related]
18. Selective adsorption of Mycobacterium Phlei on pyrite and sphalerite. Jia CY; Wei DZ; Li PJ; Li XJ; Tai PD; Liu W; Gong ZQ Colloids Surf B Biointerfaces; 2011 Apr; 83(2):214-9. PubMed ID: 21195591 [TBL] [Abstract][Full Text] [Related]
19. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution. Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694 [TBL] [Abstract][Full Text] [Related]
20. Microbial diversity response to geochemical gradient characteristics on AMD from abandoned Dashu pyrite mine in Southwest China. Li B; Wang X; Liu G; Zheng L; Cheng C Environ Sci Pollut Res Int; 2022 Oct; 29(49):74983-74997. PubMed ID: 35648344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]