BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 27705825)

  • 41. A comparative investigation of methods for longitudinal data with limits of detection through a case study.
    Fu P; Hughes J; Zeng G; Hanook S; Orem J; Mwanda OW; Remick SC
    Stat Methods Med Res; 2016 Feb; 25(1):153-66. PubMed ID: 22504231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A statistical assessment of saturation and mobile sampling strategies to estimate long-term average concentrations across urban areas.
    Xu X; Brook JR; Guo Y
    J Air Waste Manag Assoc; 2007 Nov; 57(11):1396-406. PubMed ID: 18069463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coupled aquifer-borehole simulation.
    Clemo T
    Ground Water; 2010; 48(1):68-78. PubMed ID: 19682095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of discriminant analysis with clustered data to determine anthropogenic metals contamination.
    Anderson RH; Farrar DB; Thoms SR
    Sci Total Environ; 2009 Dec; 408(1):50-6. PubMed ID: 19819526
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simulation system SONCHES-based toxicokinetic model and data bank as a tool in biological monitoring and risk assessment.
    Wünscher G; Kersting H; Heberer H; Westmeier I; Wenzel V; Flechsig M; Matthaeus E
    Sci Total Environ; 1991 Jan; 101(1-2):101-9. PubMed ID: 2057758
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Change-point models to estimate the limit of detection.
    May RC; Chu H; Ibrahim JG; Hudgens MG; Lees AC; Margolis DM
    Stat Med; 2013 Dec; 32(28):4995-5007. PubMed ID: 23784922
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessing Space, Time, and Remediation Contribution to Soil Pollutant Variation near the Detection Limit Using Hurdle Models to Account for a Large Proportion of Nondetectable Results.
    Huang L; Bradshaw K; Grosskleg J; Siciliano SD
    Environ Sci Technol; 2019 Jun; 53(12):6824-6833. PubMed ID: 31070028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of several methods for analyzing censored data.
    Hewett P; Ganser GH
    Ann Occup Hyg; 2007 Oct; 51(7):611-32. PubMed ID: 17940277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada.
    Ménard R; Deshaies-Jacques M; Gasset N
    J Air Waste Manag Assoc; 2016 Sep; 66(9):874-95. PubMed ID: 27104336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada.
    Buteau S; Hatzopoulou M; Crouse DL; Smargiassi A; Burnett RT; Logan T; Cavellin LD; Goldberg MS
    Environ Res; 2017 Jul; 156():201-230. PubMed ID: 28359040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of sediment load estimation models by using artificial neural networking techniques.
    Hassan M; Ali Shamim M; Sikandar A; Mehmood I; Ahmed I; Ashiq SZ; Khitab A
    Environ Monit Assess; 2015 Nov; 187(11):686. PubMed ID: 26463089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Testing goodness of fit of parametric models for censored data.
    Nysen R; Aerts M; Faes C
    Stat Med; 2012 Sep; 31(21):2374-85. PubMed ID: 22714389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of techniques for assessing central tendency in left-censored data using PCB and p,p'DDE contaminant concentrations from Michigan's Bald Eagle Biosentinel Program.
    Leith KF; Bowerman WW; Wierda MR; Best DA; Grubb TG; Sikarske JG
    Chemosphere; 2010 Jun; 80(1):7-12. PubMed ID: 20416924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A methodology for ecosystem-scale modeling of selenium.
    Presser TS; Luoma SN
    Integr Environ Assess Manag; 2010 Oct; 6(4):685-710. PubMed ID: 20872649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A systematic examination of a random sampling strategy for source apportionment calculations.
    Andersson A
    Sci Total Environ; 2011 Dec; 412-413():232-8. PubMed ID: 22078368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model-based approach for making ecological inference from distance sampling data.
    Johnson DS; Laake JL; Ver Hoef JM
    Biometrics; 2010 Mar; 66(1):310-8. PubMed ID: 19459840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Methodology for analyzing censored correlated data: application of marginal and frailty approaches in human genetics. The European Community Alport Syndrome Concerted Action Group (ECASCA)].
    Albert I; Jais JP
    Rev Epidemiol Sante Publique; 1999 Dec; 47(6):545-54. PubMed ID: 10673588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonparametric rank regression for analyzing water quality concentration data with multiple detection limits.
    Fu L; Wang YG
    Environ Sci Technol; 2011 Feb; 45(4):1481-9. PubMed ID: 21265501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.