BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27706104)

  • 1. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.
    Islam MZ; Tsui YY
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microflow Cytometer with a Rectangular Quasi-Flat-Top Laser Spot.
    Zhao J; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27626428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical Solution of the Time-Dependent Microfluidic Poiseuille Flow in Rectangular Channel Cross-Sections and its Numerical Implementation in Microsoft Excel.
    Risch P; Helmer D; Kotz F; Rapp BE
    Biosensors (Basel); 2019 May; 9(2):. PubMed ID: 31137723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipative particle dynamics for modeling micro-objects in microfluidics: application to dielectrophoresis.
    Waheed W; Alazzam A; Al-Khateeb AN; Abu-Nada E
    Biomech Model Mechanobiol; 2020 Feb; 19(1):389-400. PubMed ID: 31473843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic rectifier: anisotropic flow resistance at low Reynolds numbers.
    Groisman A; Quake SR
    Phys Rev Lett; 2004 Mar; 92(9):094501. PubMed ID: 15089471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical framework for simulating bio-species transport in microfluidic channels with application to antibody biosensors.
    Shahbazi F; Jabbari M; Esfahani MN; Keshmiri A
    MethodsX; 2020; 7():101132. PubMed ID: 33251124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of passive furrowed channel micromixers for lab-on-a-chip applications.
    Nason F; Pennati G; Dubini G
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):278-85. PubMed ID: 24700264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2017 Sep; 65(3):211-231. PubMed ID: 28695410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics simulation of two-phase flow patterns in a serpentine microfluidic device.
    Amini Y; Ghazanfari V; Heydari M; Shadman MM; Khamseh AG; Khani MH; Hassanvand A
    Sci Rep; 2023 Jun; 13(1):9483. PubMed ID: 37301919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method.
    Mautner T
    Biosens Bioelectron; 2004 Jun; 19(11):1409-19. PubMed ID: 15093212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers.
    Liu C; Hu G; Jiang X; Sun J
    Lab Chip; 2015 Feb; 15(4):1168-77. PubMed ID: 25563524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.