These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 27706231)
1. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone. Moafian Z; Khoshaman K; Oryan A; Kurganov BI; Yousefi R PLoS One; 2016; 11(10):e0164139. PubMed ID: 27706231 [TBL] [Abstract][Full Text] [Related]
2. Effect of homocysteinylation on structure, chaperone activity and fibrillation propensity of lens alpha-crystallin. Yousefi R; Khazaei S; Moosavi-Movahedi AA Protein Pept Lett; 2013 Aug; 20(8):932-41. PubMed ID: 23458667 [TBL] [Abstract][Full Text] [Related]
3. The Structural Alteration and Aggregation of Bovine Lens Gamma-Crystallin by Homocysteinylation; The Pathomechanism Underlying Cataract Development During Hyperhomocysteinimia. Hajjari S; Masoudi R; Javadi S; Hemmateenejad B; Yousefi R Protein Pept Lett; 2016; 23(1):78-86. PubMed ID: 26548860 [TBL] [Abstract][Full Text] [Related]
4. Effect of homocysteine thiolactone on structure and aggregation propensity of bovine pancreatic insulin. Jalili S; Yousefi R; Papari MM; Moosavi-Movahedi AA Protein J; 2011 Jun; 30(5):299-307. PubMed ID: 21573894 [TBL] [Abstract][Full Text] [Related]
5. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract. Chen Y; Yi L; Yan G; Fang Y; Jang Y; Wu X; Zhou X; Wei L Curr Eye Res; 2010 Jul; 35(7):620-30. PubMed ID: 20597648 [TBL] [Abstract][Full Text] [Related]
6. Protective effects of carnosine on dehydroascorbate-induced structural alteration and opacity of lens crystallins: important implications of carnosine pleiotropic functions to combat cataractogenesis. Javadi S; Yousefi R; Hosseinkhani S; Tamaddon AM; Uversky VN J Biomol Struct Dyn; 2017 Jun; 35(8):1766-1784. PubMed ID: 27472261 [TBL] [Abstract][Full Text] [Related]
7. Aggregation and fibrillation of eye lens crystallins by homocysteinylation; implication in the eye pathological disorders. Khazaei S; Yousefi R; Alavian-Mehr MM Protein J; 2012 Dec; 31(8):717-27. PubMed ID: 23070797 [TBL] [Abstract][Full Text] [Related]
8. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients. Yousefi R; Javadi S; Amirghofran S; Oryan A; Moosavi-Movahedi AA Int J Biol Macromol; 2016 Jan; 82():328-38. PubMed ID: 26478093 [TBL] [Abstract][Full Text] [Related]
9. Acetylation of lens crystallins: a possible mechanism by which aspirin could prevent cataract formation. Rao GN; Lardis MP; Cotlier E Biochem Biophys Res Commun; 1985 May; 128(3):1125-32. PubMed ID: 4004853 [TBL] [Abstract][Full Text] [Related]
10. The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts. Zm SZ; Khoshaman K; Masoudi R; Hemmateenejad B; Yousefi R Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():174-83. PubMed ID: 27434877 [TBL] [Abstract][Full Text] [Related]
11. Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin. Kumar PA; Suryanarayana P; Reddy PY; Reddy GB Mol Vis; 2005 Jul; 11():561-8. PubMed ID: 16088325 [TBL] [Abstract][Full Text] [Related]
12. Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins. Jobby MK; Sharma Y FEBS J; 2007 Aug; 274(16):4135-47. PubMed ID: 17651443 [TBL] [Abstract][Full Text] [Related]
13. [The recent progress on the role of alpha-crystallin as a molecular chaperone in cataractogenesis]. Yan H; Hui Y Yan Ke Xue Bao; 2000 Jun; 16(2):91-6. PubMed ID: 12579912 [TBL] [Abstract][Full Text] [Related]
14. Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone. Evans P; Slingsby C; Wallace BA Biochem J; 2008 Feb; 409(3):691-9. PubMed ID: 17937660 [TBL] [Abstract][Full Text] [Related]
15. Photosensitized structural modifications of the lens protein alpha-crystallin: do all modifications impair chaperone-like activity? Sgarbossa A; Youssef T; Lenci F Photochem Photobiol; 2003 May; 77(5):567-71. PubMed ID: 12812302 [TBL] [Abstract][Full Text] [Related]
16. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Haslbeck M; Peschek J; Buchner J; Weinkauf S Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):149-66. PubMed ID: 26116912 [TBL] [Abstract][Full Text] [Related]
18. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. Meehan S; Berry Y; Luisi B; Dobson CM; Carver JA; MacPhee CE J Biol Chem; 2004 Jan; 279(5):3413-9. PubMed ID: 14615485 [TBL] [Abstract][Full Text] [Related]
19. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation. Kim I; Saito T; Fujii N; Kanamoto T; Fujii N Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614 [TBL] [Abstract][Full Text] [Related]
20. Functional and structural studies of alpha-crystallin from galactosemic rat lenses. Huang FY; Ho Y; Shaw TS; Chuang SA Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]