BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27706652)

  • 1. Identification of low potassium stress-responsive proteins in tobacco (Nicotiana tabacum) seedling roots using an iTRAQ-based analysis.
    Ren XL; Li LQ; Xu L; Guo YS; Lu LM
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo transcriptome analysis of tobacco seedlings and identification of the early response gene network under low-potassium stress.
    Li LQ; Li J; Chen Y; Lu YF; Lu LM
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium and zinc induced similar changes in protein and glycoprotein patterns in tobacco (Nicotiana tabacum l.) seedlings and plants.
    Peharec Štefanić P; Sikić S; Cvjetko P; Balen B
    Arh Hig Rada Toksikol; 2012 Sep; 63(3):321-35. PubMed ID: 23152382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of top excision on the potassium accumulation and expression of potassium channel genes in tobacco.
    Dai XY; Su YR; Wei WX; Wu JS; Fan YK
    J Exp Bot; 2009; 60(1):279-89. PubMed ID: 19112172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress.
    Ge P; Hao P; Cao M; Guo G; Lv D; Subburaj S; Li X; Yan X; Xiao J; Ma W; Yan Y
    Proteomics; 2013 Oct; 13(20):3046-58. PubMed ID: 23929510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.
    Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG
    Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential proteomics of tobacco seedling roots at high and low potassium concentrations.
    Dai LJ; Liu YK; Zhu CW; Zhong J
    Sci Rep; 2021 Apr; 11(1):9194. PubMed ID: 33911133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis reveals dynamic changes in the gene expression of tobacco seedlings under low potassium stress.
    Lu L; Chen Y; Lu L; Lu Y; Li L
    J Genet; 2015 Sep; 94(3):397-406. PubMed ID: 26440078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco.
    Volkov RA; Panchuk II; Schöffl F
    Plant Mol Biol; 2005 Mar; 57(4):487-502. PubMed ID: 15821976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR.
    Volkov RA; Panchuk II; Schöffl F
    J Exp Bot; 2003 Oct; 54(391):2343-9. PubMed ID: 14504302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco (
    Wu S; Guo Y; Adil MF; Sehar S; Cai B; Xiang Z; Tu Y; Zhao D; Shamsi IH
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.
    Ding M; Jiang Y; Cao Y; Lin L; He S; Zhou W; Rong J
    Gene; 2014 Feb; 535(2):273-85. PubMed ID: 24279997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus Piriformospora indica.
    Schuck S; Camehl I; Gilardoni PA; Oelmueller R; Baldwin IT; Bonaventure G
    Plant Physiol; 2012 Oct; 160(2):929-43. PubMed ID: 22892352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco (Nicotiana tabacum) roots.
    Bukhari SA; Shang S; Zhang M; Zheng W; Zhang G; Wang TZ; Shamsi IH; Wu F
    Environ Toxicol Chem; 2015 Nov; 34(11):2573-82. PubMed ID: 26053264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptomic analysis reveals that multiple hormone signal transduction and carbohydrate metabolic pathways are affected by Bacillus cereus in Nicotiana tabacum.
    Li Y; Zhao M; Chen W; Du H; Xie X; Wang D; Dai Y; Xia Q; Wang G
    Genomics; 2020 Nov; 112(6):4254-4267. PubMed ID: 32679071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum.
    Chen Y; Dong J; Bennetzen JL; Zhong M; Yang J; Zhang J; Li S; Hao X; Zhang Z; Wang X
    Sci Rep; 2017 Oct; 7(1):12504. PubMed ID: 28970509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic Profiles Reveal the Function of Different Vegetative Tissues of Moringa oleifera.
    Wang L; Zou Q; Wang J; Zhang J; Liu Z; Chen X
    Protein J; 2016 Dec; 35(6):440-447. PubMed ID: 27832458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco.
    Hayashi S; Watanabe M; Kobayashi M; Tohge T; Hashimoto T; Shoji T
    Plant Cell Physiol; 2020 Jun; 61(6):1041-1053. PubMed ID: 32191315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco.
    Ganesan G; Sankararamasubramanian HM; Harikrishnan M; Ganpudi A; Parida A
    J Exp Bot; 2012 Jul; 63(12):4549-61. PubMed ID: 22904269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses.
    Harada E; Kim JA; Meyer AJ; Hell R; Clemens S; Choi YE
    Plant Cell Physiol; 2010 Oct; 51(10):1627-37. PubMed ID: 20693332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.