These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 27706655)
1. Transcriptome analysis of potential simple sequence repeat markers in Ammopiptanthus mongolicus. Jin M; Guo MY; Han L; Li JL; Yang SY; Su YH Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706655 [TBL] [Abstract][Full Text] [Related]
2. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. Liu M; Shi J; Lu C BMC Plant Biol; 2013 Jun; 13():88. PubMed ID: 23734749 [TBL] [Abstract][Full Text] [Related]
3. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. Pang T; Ye CY; Xia X; Yin W BMC Genomics; 2013 Jul; 14():488. PubMed ID: 23865740 [TBL] [Abstract][Full Text] [Related]
4. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. Zhou Y; Gao F; Liu R; Feng J; Li H BMC Genomics; 2012 Jun; 13():266. PubMed ID: 22721448 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. Wu Y; Wei W; Pang X; Wang X; Zhang H; Dong B; Xing Y; Li X; Wang M BMC Genomics; 2014 Aug; 15(1):671. PubMed ID: 25108399 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. Chen H; Wang L; Wang S; Liu C; Blair MW; Cheng X PLoS One; 2015; 10(4):e0120273. PubMed ID: 25830701 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic Analysis of Drought Stress Responses in Ammopiptanthus mongolicus Leaves Using the RNA-Seq Technique. Gao F; Wang J; Wei S; Li Z; Wang N; Li H; Feng J; Li H; Zhou Y; Zhang F PLoS One; 2015; 10(4):e0124382. PubMed ID: 25923822 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. Bhardwaj J; Chauhan R; Swarnkar MK; Chahota RK; Singh AK; Shankar R; Yadav SK BMC Genomics; 2013 Sep; 14():647. PubMed ID: 24059455 [TBL] [Abstract][Full Text] [Related]
9. De novo assembly of the desert tree Haloxylon ammodendron (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. Long Y; Zhang J; Tian X; Wu S; Zhang Q; Zhang J; Dang Z; Pei XW BMC Genomics; 2014 Dec; 15(1):1111. PubMed ID: 25511667 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the Transcriptome of the Xerophyte Ammopiptanthus mongolicus Leaves under Drought Stress by 454 Pyrosequencing. Pang T; Guo L; Shim D; Cannon N; Tang S; Chen J; Xia X; Yin W; Carlson JE PLoS One; 2015; 10(8):e0136495. PubMed ID: 26313687 [TBL] [Abstract][Full Text] [Related]
11. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. Li H; Yao W; Fu Y; Li S; Guo Q PLoS One; 2015; 10(1):e111054. PubMed ID: 25559297 [TBL] [Abstract][Full Text] [Related]
12. A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms. Feng L; Teng F; Li N; Zhang JC; Zhang BJ; Tsai SN; Yue XL; Gu LF; Meng GH; Deng TQ; Tong SW; Wang CM; Li Y; Shi W; Zeng YL; Jiang YM; Yu W; Ngai SM; An LZ; Lam HM; He JX Plant Commun; 2024 Jul; 5(7):100891. PubMed ID: 38561965 [TBL] [Abstract][Full Text] [Related]
13. De novo Assembly, Characterization of Immature Seed Transcriptome and Development of Genic-SSR Markers in Black Gram [Vigna mungo (L.) Hepper]. Souframanien J; Reddy KS PLoS One; 2015; 10(6):e0128748. PubMed ID: 26042595 [TBL] [Abstract][Full Text] [Related]
14. [Construction and sequence analysis of a drought-induced full-length cDNA library from Ammopiptanthus mongolicus]. Lin Q; Wang X; Li J; Zhao H; Wang M Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):86-95. PubMed ID: 22667112 [TBL] [Abstract][Full Text] [Related]
15. Development and Validation of EST-SSR Markers from the Transcriptome of Adzuki Bean (Vigna angularis). Chen H; Liu L; Wang L; Wang S; Somta P; Cheng X PLoS One; 2015; 10(7):e0131939. PubMed ID: 26146990 [TBL] [Abstract][Full Text] [Related]
16. Development of SSR markers in Paeonia based on De Novo transcriptomic assemblies. He D; Zhang J; Zhang X; He S; Xie D; Liu Y; Li C; Wang Z; Liu Y PLoS One; 2020; 15(1):e0227794. PubMed ID: 31999761 [TBL] [Abstract][Full Text] [Related]
17. Reference gene selection for qPCR in Ammopiptanthus mongolicus under abiotic stresses and expression analysis of seven ROS-scavenging enzyme genes. Shi J; Liu M; Shi J; Zheng G; Wang Y; Wang J; Chen Y; Lu C; Yin W Plant Cell Rep; 2012 Jul; 31(7):1245-54. PubMed ID: 22451089 [TBL] [Abstract][Full Text] [Related]
18. Large scale in-silico identification and characterization of simple sequence repeats (SSRs) from de novo assembled transcriptome of Catharanthus roseus (L.) G. Don. Kumar S; Shah N; Garg V; Bhatia S Plant Cell Rep; 2014 Jun; 33(6):905-18. PubMed ID: 24482265 [TBL] [Abstract][Full Text] [Related]
19. Development of Gene-Based SSR Markers in Rice Bean (Vigna umbellata L.) Based on Transcriptome Data. Chen H; Chen X; Tian J; Yang Y; Liu Z; Hao X; Wang L; Wang S; Liang J; Zhang L; Yin F; Cheng X PLoS One; 2016; 11(3):e0151040. PubMed ID: 26950544 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome sequence analysis and mining of SSRs in Jhar Ber (Ziziphus nummularia (Burm.f.) Wight & Arn) under drought stress. Yadav R; Lone SA; Gaikwad K; Singh NK; Padaria JC Sci Rep; 2018 Feb; 8(1):2406. PubMed ID: 29402924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]