These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27706661)

  • 1. Locally linear embedding and neighborhood rough set-based gene selection for gene expression data classification.
    Sun L; Xu JC; Wang W; Yin Y
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method of tumor classification based on wavelet packet transforms and neighborhood rough set.
    Zhang SW; Huang DS; Wang SL
    Comput Biol Med; 2010 Apr; 40(4):430-7. PubMed ID: 20227068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A classification method of gene expression profile based on a locally linear embedding algorism with improved distance].
    Cai X; Wei J; Wen G; Li J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1213-6. PubMed ID: 22295716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Gene selection approach based on the fisher linear discriminant and the neighborhood rough set.
    Sun L; Zhang X; Xu J; Wang W; Liu R
    Bioengineered; 2018 Jan; 9(1):144-151. PubMed ID: 29161975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction.
    Wang SL; Li X; Zhang S; Gui J; Huang DS
    Comput Biol Med; 2010 Feb; 40(2):179-89. PubMed ID: 20044083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.
    Xu J; Mu H; Wang Y; Huang F
    Comput Math Methods Med; 2018; 2018():5490513. PubMed ID: 29666661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature selection using mutual information based uncertainty measures for tumor classification.
    Sun L; Xu J
    Biomed Mater Eng; 2014; 24(1):763-70. PubMed ID: 24211962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cuckoo search optimisation for feature selection in cancer classification: a new approach.
    Gunavathi C; Premalatha K
    Int J Data Min Bioinform; 2015; 13(3):248-65. PubMed ID: 26547979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene selection for tumor classification using neighborhood rough sets and entropy measures.
    Chen Y; Zhang Z; Zheng J; Ma Y; Xue Y
    J Biomed Inform; 2017 Mar; 67():59-68. PubMed ID: 28215562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis.
    Tang Y; Zhang YQ; Huang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):365-81. PubMed ID: 17666757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast gene selection method for multi-cancer classification using multiple support vector data description.
    Cao J; Zhang L; Wang B; Li F; Yang J
    J Biomed Inform; 2015 Feb; 53():381-9. PubMed ID: 25549938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature Genes Selection Using Fuzzy Rough Uncertainty Metric for Tumor Diagnosis.
    Xu J; Wang Y; Xu K; Zhang T
    Comput Math Methods Med; 2019; 2019():6705648. PubMed ID: 30809269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient statistical feature selection approach for classification of gene expression data.
    Chandra B; Gupta M
    J Biomed Inform; 2011 Aug; 44(4):529-35. PubMed ID: 21241823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The feature selection bias problem in relation to high-dimensional gene data.
    Krawczuk J; Ɓukaszuk T
    Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eigengene-based linear discriminant model for tumor classification using gene expression microarray data.
    Shen R; Ghosh D; Chinnaiyan A; Meng Z
    Bioinformatics; 2006 Nov; 22(21):2635-42. PubMed ID: 16926220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature fusion using locally linear embedding for classification.
    Sun BY; Zhang XM; Li J; Mao XM
    IEEE Trans Neural Netw; 2010 Jan; 21(1):163-8. PubMed ID: 19963695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of rough-based feature selection and RBF neural network for classification using gene expression data.
    Chiang JH; Ho SH
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):91-9. PubMed ID: 18334459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A granular computing approach to gene selection.
    Sun L; Xu J
    Biomed Mater Eng; 2014; 24(1):1307-14. PubMed ID: 24212026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomarker identification and cancer classification based on microarray data using Laplace naive Bayes model with mean shrinkage.
    Wu MY; Dai DQ; Shi Y; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1649-62. PubMed ID: 22868679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.