These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 27707573)
1. Reducing production of taste and odor by deep-living cyanobacteria in drinking water reservoirs by regulation of water level. Su M; Jia D; Yu J; Vogt RD; Wang J; An W; Yang M Sci Total Environ; 2017 Jan; 574():1477-1483. PubMed ID: 27707573 [TBL] [Abstract][Full Text] [Related]
2. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential. Su M; Yu J; Zhang J; Chen H; An W; Vogt RD; Andersen T; Jia D; Wang J; Yang M Water Res; 2015 Jan; 68():444-53. PubMed ID: 25462751 [TBL] [Abstract][Full Text] [Related]
3. Light as a possible regulator of MIB-producing Planktothrix in source water reservoir, mechanism and in-situ verification. Jia Z; Su M; Liu T; Guo Q; Wang Q; Burch M; Yu J; Yang M Harmful Algae; 2019 Sep; 88():101658. PubMed ID: 31582162 [TBL] [Abstract][Full Text] [Related]
4. Spatial and temporal dynamics of microbes and genes in drinking water reservoirs: Distribution and potential for taste and odor generation. Zhangsun X; Guo H; Du Q; Li N; Xue S; Li R; Ma W; Liu X; Zhang H; Huang T J Hazard Mater; 2024 Nov; 479():135708. PubMed ID: 39217936 [TBL] [Abstract][Full Text] [Related]
5. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis. Otten TG; Graham JL; Harris TD; Dreher TW Appl Environ Microbiol; 2016 Sep; 82(17):5410-20. PubMed ID: 27342564 [TBL] [Abstract][Full Text] [Related]
6. Occurrence and distribution of taste and odor compounds in subtropical water supply reservoirs and their fates in water treatment plants. Bai X; Zhang T; Wang C; Zong D; Li H; Yang Z Environ Sci Pollut Res Int; 2017 Jan; 24(3):2904-2913. PubMed ID: 27844316 [TBL] [Abstract][Full Text] [Related]
7. The predominant phytoplankton of Pseudoanabaena holding specific biosynthesis gene-derived occurrence of 2-MIB in a drinking water reservoir. Huang X; Huang Z; Chen XP; Zhang D; Zhou J; Wang X; Gao N Environ Sci Pollut Res Int; 2018 Jul; 25(19):19134-19142. PubMed ID: 29725924 [TBL] [Abstract][Full Text] [Related]
8. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Chiu YT; Yen HK; Lin TF Environ Res; 2016 Nov; 151():618-627. PubMed ID: 27607443 [TBL] [Abstract][Full Text] [Related]
9. Managing taste and odour metabolite production in drinking water reservoirs: The importance of ammonium as a key nutrient trigger. Perkins RG; Slavin EI; Andrade TMC; Blenkinsopp C; Pearson P; Froggatt T; Godwin G; Parslow J; Hurley S; Luckwell R; Wain DJ J Environ Manage; 2019 Aug; 244():276-284. PubMed ID: 31128332 [TBL] [Abstract][Full Text] [Related]
10. A guide to geosmin- and MIB-producing cyanobacteria in the United States. Izaguirre G; Taylor WD Water Sci Technol; 2004; 49(9):19-24. PubMed ID: 15237602 [TBL] [Abstract][Full Text] [Related]
11. Distribution, abundance and activity of geosmin and 2-methylisoborneol-producing Streptomyces in drinking water reservoirs. Asquith E; Evans C; Dunstan RH; Geary P; Cole B Water Res; 2018 Nov; 145():30-38. PubMed ID: 30118975 [TBL] [Abstract][Full Text] [Related]
12. Quantitative method to determine the regional drinking water odorant regulation goals based on odor sensitivity distribution: illustrated using 2-MIB. Yu J; An W; Cao N; Yang M; Gu J; Zhang D; Lu N J Environ Sci (China); 2014 Jul; 26(7):1389-94. PubMed ID: 25079986 [TBL] [Abstract][Full Text] [Related]
13. Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China. Qiu P; Chen Y; Li C; Huo D; Bi Y; Wang J; Li Y; Li R; Yu G Environ Pollut; 2021 Nov; 288():117772. PubMed ID: 34273769 [TBL] [Abstract][Full Text] [Related]
14. Eutrophication mediates a common off-flavor compound, 2-methylisoborneol, in a drinking water reservoir. Olsen BK; Chislock MF; Wilson AE Water Res; 2016 Apr; 92():228-34. PubMed ID: 26874253 [TBL] [Abstract][Full Text] [Related]
15. Succession and interaction of surface and subsurface cyanobacterial blooms in oligotrophic/mesotrophic reservoirs: A case study in Miyun Reservoir. Su M; Andersen T; Burch M; Jia Z; An W; Yu J; Yang M Sci Total Environ; 2019 Feb; 649():1553-1562. PubMed ID: 30308923 [TBL] [Abstract][Full Text] [Related]
16. Ignored microbial-induced taste and odor in drinking water reservoirs: Novel insight into actinobacterial community structure, assembly, and odor-producing potential. Zhang H; Ni T; Liu X; Ma B; Huang T; Zhao D; Li H; Chen K; Liu T Water Res; 2024 Oct; 264():122219. PubMed ID: 39121820 [TBL] [Abstract][Full Text] [Related]
17. Earthy odor compounds production and loss in three cyanobacterial cultures. Li Z; Hobson P; An W; Burch MD; House J; Yang M Water Res; 2012 Oct; 46(16):5165-73. PubMed ID: 22818951 [TBL] [Abstract][Full Text] [Related]
18. Occurrence of swampy/septic odor and possible odorants in source and finished drinking water of major cities across China. Wang C; Yu J; Guo Q; Sun D; Su M; An W; Zhang Y; Yang M Environ Pollut; 2019 Jun; 249():305-310. PubMed ID: 30901644 [TBL] [Abstract][Full Text] [Related]
19. Contrasting patterns of 2-methylisoborneol (MIB) vs. geosmin across depth in a drinking water reservoir are mediated by cyanobacteria and actinobacteria. Chislock MF; Olsen BK; Choi J; Abebe A; Bleier TL; Wilson AE Environ Sci Pollut Res Int; 2021 Jun; 28(24):32005-32014. PubMed ID: 33620686 [TBL] [Abstract][Full Text] [Related]
20. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir. Su M; Zhu Y; Jia Z; Liu T; Yu J; Burch M; Yang M Water Res; 2021 Mar; 192():116848. PubMed ID: 33524635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]