These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A combinatorial code of maternal GATA, Ets and beta-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Rothbächer U; Bertrand V; Lamy C; Lemaire P Development; 2007 Nov; 134(22):4023-32. PubMed ID: 17965050 [TBL] [Abstract][Full Text] [Related]
4. Tfap2 and Sox1/2/3 cooperatively specify ectodermal fates in ascidian embryos. Imai KS; Hikawa H; Kobayashi K; Satou Y Development; 2017 Jan; 144(1):33-37. PubMed ID: 27888190 [TBL] [Abstract][Full Text] [Related]
5. Gata is ubiquitously required for the earliest zygotic gene transcription in the ascidian embryo. Imai KS; Kobayashi K; Kari W; Rothbächer U; Ookubo N; Oda-Ishii I; Satou Y Dev Biol; 2020 Feb; 458(2):215-227. PubMed ID: 31751550 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of two key maternal factors that initiate zygotic regulatory programs in ascidian embryos. Oda-Ishii I; Abe T; Satou Y Dev Biol; 2018 May; 437(1):50-59. PubMed ID: 29550363 [TBL] [Abstract][Full Text] [Related]
7. Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos. Hudson C; Sirour C; Yasuo H Elife; 2016 Jun; 5():. PubMed ID: 27351101 [TBL] [Abstract][Full Text] [Related]
8. A Maternal System Initiating the Zygotic Developmental Program through Combinatorial Repression in the Ascidian Embryo. Oda-Ishii I; Kubo A; Kari W; Suzuki N; Rothbächer U; Satou Y PLoS Genet; 2016 May; 12(5):e1006045. PubMed ID: 27152625 [TBL] [Abstract][Full Text] [Related]
10. Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo. Ikeda T; Satou Y Development; 2017 Jan; 144(1):38-43. PubMed ID: 27888196 [TBL] [Abstract][Full Text] [Related]
11. Differential gene expression along the animal-vegetal axis in the ascidian embryo is maintained by a dual functional protein Foxd. Tokuhiro SI; Tokuoka M; Kobayashi K; Kubo A; Oda-Ishii I; Satou Y PLoS Genet; 2017 May; 13(5):e1006741. PubMed ID: 28520732 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the trunk-tail patterning in the ascidian embryo: a possible interaction of cascades between lithium/beta-catenin and localized maternal factor pem. Yoshida S; Marikawa Y; Satoh N Dev Biol; 1998 Oct; 202(2):264-79. PubMed ID: 9769178 [TBL] [Abstract][Full Text] [Related]
14. Novel genes involved in canonical Wnt/beta-catenin signaling pathway in early Ciona intestinalis embryos. Wada S; Hamada M; Kobayashi K; Satoh N Dev Growth Differ; 2008 May; 50(4):215-27. PubMed ID: 18336583 [TBL] [Abstract][Full Text] [Related]
15. Early transcriptional similarities between two distinct neural lineages during ascidian embryogenesis. Copley RR; Buttin J; Arguel MJ; Williaume G; Lebrigand K; Barbry P; Hudson C; Yasuo H Dev Biol; 2024 Oct; 514():1-11. PubMed ID: 38878991 [TBL] [Abstract][Full Text] [Related]
17. Nuclear accumulation of beta-catenin and transcription of downstream genes are regulated by zygotic Wnt5alpha and maternal Dsh in ascidian embryos. Kawai N; Iida Y; Kumano G; Nishida H Dev Dyn; 2007 Jun; 236(6):1570-82. PubMed ID: 17474118 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of beta-catenin downstream genes in early embryos of the ascidian Ciona savignyi. Imai KS Differentiation; 2003 Aug; 71(6):346-60. PubMed ID: 12919104 [TBL] [Abstract][Full Text] [Related]
19. Cis-regulatory code for determining the action of Foxd as both an activator and a repressor in ascidian embryos. Tokuhiro S; Satou Y Dev Biol; 2021 Aug; 476():11-17. PubMed ID: 33753082 [TBL] [Abstract][Full Text] [Related]
20. [Ascidian embryos: from the birth of experimental embryology to the analysis of gene regulatory networks]. Lamy C; Lemaire P Med Sci (Paris); 2008 Mar; 24(3):263-9. PubMed ID: 18334174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]