These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Phan HV; Park HC Science; 2020 Dec; 370(6521):1214-1219. PubMed ID: 33273101 [TBL] [Abstract][Full Text] [Related]
24. Special section on biomimetics of movement. Carpi F; Erb R; Jeronimidis G Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305 [TBL] [Abstract][Full Text] [Related]
25. Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping. Min Y; Zhao G; Pan D; Shao X Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366811 [TBL] [Abstract][Full Text] [Related]
26. Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators. Chen Y; Arase C; Ren Z; Chirarattananon P Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888953 [TBL] [Abstract][Full Text] [Related]
27. A Retrospective of Project Robo Raven: Developing New Capabilities for Enhancing the Performance of Flapping Wing Aerial Vehicles. Bruck HA; Gupta SK Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887616 [TBL] [Abstract][Full Text] [Related]
28. An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking. Fei F; Tu Z; Deng X Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595240 [TBL] [Abstract][Full Text] [Related]
29. Insect-like flapping wing mechanism based on a double spherical Scotch yoke. Galiński C; Zbikowski R J R Soc Interface; 2005 Jun; 2(3):223-35. PubMed ID: 16849181 [TBL] [Abstract][Full Text] [Related]
31. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
32. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method. Tay WB; van Oudheusden BW; Bijl H Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155 [TBL] [Abstract][Full Text] [Related]
34. Toward a Dielectric Elastomer Resonator Driven Flapping Wing Micro Air Vehicle. Cao C; Burgess S; Conn AT Front Robot AI; 2018; 5():137. PubMed ID: 33501015 [TBL] [Abstract][Full Text] [Related]
35. Kinematic compensation for wing loss in flying damselflies. Kassner Z; Dafni E; Ribak G J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807 [TBL] [Abstract][Full Text] [Related]
36. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot. Truong NT; Phan HV; Park HC Bioinspir Biomim; 2019 Mar; 14(3):036010. PubMed ID: 30658344 [TBL] [Abstract][Full Text] [Related]
37. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design. Kajak KM; Karásek M; Chu QP; de Croon GCHE Bioinspir Biomim; 2019 Jun; 14(4):046008. PubMed ID: 31039555 [TBL] [Abstract][Full Text] [Related]
38. Aeroelastic characterisation of a bio-inspired flapping membrane wing. Gehrke A; Richeux J; Uksul E; Mulleners K Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35917821 [TBL] [Abstract][Full Text] [Related]
39. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter. Usherwood JR Bioinspir Biomim; 2009 Mar; 4(1):015003. PubMed ID: 19258692 [TBL] [Abstract][Full Text] [Related]
40. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies. Du G; Sun M J Theor Biol; 2012 May; 300():19-28. PubMed ID: 22266123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]