These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27707903)

  • 21. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimum hovering wing planform.
    Nabawy MR; Crowther WJ
    J Theor Biol; 2016 Oct; 406():187-91. PubMed ID: 27329340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of collision recovery in flying beetles and flapping-wing robots.
    Phan HV; Park HC
    Science; 2020 Dec; 370(6521):1214-1219. PubMed ID: 33273101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators.
    Chen Y; Arase C; Ren Z; Chirarattananon P
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking.
    Fei F; Tu Z; Deng X
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insect-like flapping wing mechanism based on a double spherical Scotch yoke.
    Galiński C; Zbikowski R
    J R Soc Interface; 2005 Jun; 2(3):223-35. PubMed ID: 16849181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the autorotation of animal wings.
    Ortega-Jimenez VM; Martín-Alcántara A; Fernandez-Feria R; Dudley R
    J R Soc Interface; 2017 Jan; 14(126):. PubMed ID: 28077761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward a Dielectric Elastomer Resonator Driven Flapping Wing Micro Air Vehicle.
    Cao C; Burgess S; Conn AT
    Front Robot AI; 2018; 5():137. PubMed ID: 33501015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot.
    Truong NT; Phan HV; Park HC
    Bioinspir Biomim; 2019 Mar; 14(3):036010. PubMed ID: 30658344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design.
    Kajak KM; Karásek M; Chu QP; de Croon GCHE
    Bioinspir Biomim; 2019 Jun; 14(4):046008. PubMed ID: 31039555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanics of hover performance in Neotropical hummingbirds versus bats.
    Ingersoll R; Haizmann L; Lentink D
    Sci Adv; 2018 Sep; 4(9):eaat2980. PubMed ID: 30263957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aeroelastic characterisation of a bio-inspired flapping membrane wing.
    Gehrke A; Richeux J; Uksul E; Mulleners K
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35917821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.
    Usherwood JR
    Bioinspir Biomim; 2009 Mar; 4(1):015003. PubMed ID: 19258692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
    Du G; Sun M
    J Theor Biol; 2012 May; 300():19-28. PubMed ID: 22266123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.