These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27707965)

  • 1. Basal Ganglia Output Controls Active Avoidance Behavior.
    Hormigo S; Vega-Flores G; Castro-Alamancos MA
    J Neurosci; 2016 Oct; 36(40):10274-10284. PubMed ID: 27707965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Action Mediated by the Midbrain.
    Hormigo S; Zhou J; Chabbert D; Shanmugasundaram B; Castro-Alamancos MA
    J Neurosci; 2021 Feb; 41(7):1529-1552. PubMed ID: 33328292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circuits That Mediate Expression of Signaled Active Avoidance Converge in the Pedunculopontine Tegmentum.
    Hormigo S; Vega-Flores G; Rovira V; Castro-Alamancos MA
    J Neurosci; 2019 Jun; 39(23):4576-4594. PubMed ID: 30936242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Signaled Locomotor Avoidance Action Is Fully Represented in the Neural Activity of the Midbrain Tegmentum.
    Hormigo S; Shanmugasundaram B; Zhou J; Castro-Alamancos MA
    J Neurosci; 2021 May; 41(19):4262-4275. PubMed ID: 33789917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nigrotectal Stimulation Stops Interval Timing in Mice.
    Toda K; Lusk NA; Watson GDR; Kim N; Lu D; Li HE; Meck WH; Yin HH
    Curr Biol; 2017 Dec; 27(24):3763-3770.e3. PubMed ID: 29199075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of the Nigrotectal Pathway at the Level of the Superior Colliculus Reduces Threat Recognition and Causes a Shift From Avoidance to Approach Behavior.
    Almada RC; Genewsky AJ; Heinz DE; Kaplick PM; Coimbra NC; Wotjak CT
    Front Neural Circuits; 2018; 12():36. PubMed ID: 29867370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of basal ganglia output by direct and indirect pathway projection neurons.
    Freeze BS; Kravitz AV; Hammack N; Berke JD; Kreitzer AC
    J Neurosci; 2013 Nov; 33(47):18531-9. PubMed ID: 24259575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional Control of Orienting Behavior by the Substantia Nigra Pars Reticulata: Distinct Significance of Head and Whisker Movements.
    Hormigo S; Zhou J; Castro-Alamancos MA
    eNeuro; 2021; 8(5):. PubMed ID: 34544763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting responses to inhibitory synaptic input in substantia nigra pars reticulata neurons.
    Simmons DV; Higgs MH; Lebby S; Wilson CJ
    J Neurophysiol; 2018 Nov; 120(5):2679-2693. PubMed ID: 30207859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unilateral Optogenetic Inhibition and Excitation of Basal Ganglia Output Affect Directional Lick Choices and Movement Initiation in Mice.
    Morrissette AE; Chen PH; Bhamani C; Borden PY; Waiblinger C; Stanley GB; Jaeger D
    Neuroscience; 2019 Dec; 423():55-65. PubMed ID: 31705892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect pathway control of firing rate and pattern in the substantia nigra pars reticulata.
    Simmons DV; Higgs MH; Lebby S; Wilson CJ
    J Neurophysiol; 2020 Feb; 123(2):800-814. PubMed ID: 31940230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A GABAergic nigrotectal pathway for coordination of drinking behavior.
    Rossi MA; Li HE; Lu D; Kim IH; Bartholomew RA; Gaidis E; Barter JW; Kim N; Cai MT; Soderling SH; Yin HH
    Nat Neurosci; 2016 May; 19(5):742-748. PubMed ID: 27043290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory synaptic transmission from the substantia nigra pars reticulata to the ventral medial thalamus in mice.
    Kase D; Uta D; Ishihara H; Imoto K
    Neurosci Res; 2015 Aug; 97():26-35. PubMed ID: 25887794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cortico-basal ganglia-thalamo-cortical channel underlying short-term memory.
    Wang Y; Yin X; Zhang Z; Li J; Zhao W; Guo ZV
    Neuron; 2021 Nov; 109(21):3486-3499.e7. PubMed ID: 34469773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs.
    Phillips RS; Rosner I; Gittis AH; Rubin JE
    Elife; 2020 Sep; 9():. PubMed ID: 32894224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered basal ganglia output during self-restraint.
    Gu BM; Berke JD
    Elife; 2022 Nov; 11():. PubMed ID: 36321810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
    Barry J; Akopian G; Cepeda C; Levine MS
    J Neurosci; 2018 May; 38(20):4678-4694. PubMed ID: 29691329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural correlates of active avoidance behavior in superior colliculus.
    Cohen JD; Castro-Alamancos MA
    J Neurosci; 2010 Jun; 30(25):8502-11. PubMed ID: 20573897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic manipulation of a value-coding pathway from the primate caudate tail facilitates saccadic gaze shift.
    Amita H; Kim HF; Inoue KI; Takada M; Hikosaka O
    Nat Commun; 2020 Apr; 11(1):1876. PubMed ID: 32312986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pars reticulata of the substantia nigra: a window to basal ganglia output.
    Deniau JM; Mailly P; Maurice N; Charpier S
    Prog Brain Res; 2007; 160():151-72. PubMed ID: 17499113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.