BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27708038)

  • 21. From genotypes to phenotypes: expression levels of genes encompassing adaptive SNPs in black spruce.
    Prunier J; Tessier G; Bousquet J; MacKay J
    Plant Cell Rep; 2015 Dec; 34(12):2111-25. PubMed ID: 26260097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into conifer giga-genomes.
    De La Torre AR; Birol I; Bousquet J; Ingvarsson PK; Jansson S; Jones SJ; Keeling CI; MacKay J; Nilsson O; Ritland K; Street N; Yanchuk A; Zerbe P; Bohlmann J
    Plant Physiol; 2014 Dec; 166(4):1724-32. PubMed ID: 25349325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of chitinases from interior spruce and lodgepole pine.
    Kolosova N; Breuil C; Bohlmann J
    Phytochemistry; 2014 May; 101():32-9. PubMed ID: 24564978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis).
    Holliday JA; Ritland K; Aitken SN
    New Phytol; 2010 Oct; 188(2):501-14. PubMed ID: 20663060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic and morphological structure of a spruce hybrid (Picea sitchensis x P. glauca) zone along a climatic gradient.
    Hamilton JA; Aitken SN
    Am J Bot; 2013 Aug; 100(8):1651-62. PubMed ID: 23935108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climatic adaptation and ecological divergence between two closely related pine species in Southeast China.
    Zhou Y; Zhang L; Liu J; Wu G; Savolainen O
    Mol Ecol; 2014 Jul; 23(14):3504-22. PubMed ID: 24935279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental Genome-Wide Association Reveals Climate Adaptation Is Shaped by Subtle to Moderate Allele Frequency Shifts in Loblolly Pine.
    De La Torre AR; Wilhite B; Neale DB
    Genome Biol Evol; 2019 Oct; 11(10):2976-2989. PubMed ID: 31599932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic dynamics during autumn cold acclimation within and among populations of Sitka spruce (Picea sitchensis).
    Dauwe R; Holliday JA; Aitken SN; Mansfield SD
    New Phytol; 2012 Apr; 194(1):192-205. PubMed ID: 22248127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce.
    Prunier J; Laroche J; Beaulieu J; Bousquet J
    Mol Ecol; 2011 Apr; 20(8):1702-16. PubMed ID: 21375634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modularity of genes involved in local adaptation to climate despite physical linkage.
    Lotterhos KE; Yeaman S; Degner J; Aitken S; Hodgins KA
    Genome Biol; 2018 Oct; 19(1):157. PubMed ID: 30290843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular signatures of local adaptation to light in Norway spruce.
    Ranade SS; García-Gil MR
    Planta; 2021 Jan; 253(2):53. PubMed ID: 33511433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine.
    Hamberger B; Bohlmann J
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1209-14. PubMed ID: 17073787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Looking for Local Adaptation: Convergent Microevolution in Aleppo Pine (
    Ruiz Daniels R; Taylor RS; González-Martínez SC; Vendramin GG; Fady B; Oddou-Muratorio S; Piotti A; Simioni G; Grivet D; Beaumont MA
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31487909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide association genetics of an adaptive trait in lodgepole pine.
    Parchman TL; Gompert Z; Mudge J; Schilkey FD; Benkman CW; Buerkle CA
    Mol Ecol; 2012 Jun; 21(12):2991-3005. PubMed ID: 22404645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).
    Cullingham CI; Cooke JE; Coltman DW
    Genome; 2013 Oct; 56(10):577-85. PubMed ID: 24237338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydraulic acclimation to shading in boreal conifers of varying shade tolerance.
    Schoonmaker AL; Hacke UG; Landhäusser SM; Lieffers VJ; Tyree MT
    Plant Cell Environ; 2010 Mar; 33(3):382-93. PubMed ID: 19968826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations.
    Čepl J; Stejskal J; Korecký J; Hejtmánek J; Faltinová Z; Lstibůrek M; Gezan S
    Sci Rep; 2020 Nov; 10(1):20789. PubMed ID: 33247164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir.
    De La Torre AR; Wilhite B; Puiu D; St Clair JB; Crepeau MW; Salzberg SL; Langley CH; Allen B; Neale DB
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33477542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative in silico analysis of SSRs in coding regions of high confidence predicted genes in Norway spruce (Picea abies) and Loblolly pine (Pinus taeda).
    Ranade SS; Lin YC; Van de Peer Y; García-Gil MR
    BMC Genet; 2015 Dec; 16():149. PubMed ID: 26706685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.