BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27708373)

  • 1. GlycoMine
    Li F; Li C; Revote J; Zhang Y; Webb GI; Li J; Song J; Lithgow T
    Sci Rep; 2016 Oct; 6():34595. PubMed ID: 27708373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive-unlabelled learning of glycosylation sites in the human proteome.
    Li F; Zhang Y; Purcell AW; Webb GI; Chou KC; Lithgow T; Li C; Song J
    BMC Bioinformatics; 2019 Mar; 20(1):112. PubMed ID: 30841845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes.
    Joshi HJ; Jørgensen A; Schjoldager KT; Halim A; Dworkin LA; Steentoft C; Wandall HH; Clausen H; Vakhrushev SY
    Glycobiology; 2018 Mar; 28(3):131-136. PubMed ID: 29267884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties.
    Taherzadeh G; Dehzangi A; Golchin M; Zhou Y; Campbell MP
    Bioinformatics; 2019 Oct; 35(20):4140-4146. PubMed ID: 30903686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks.
    Gupta R; Jung E; Gooley AA; Williams KL; Brunak S; Hansen J
    Glycobiology; 1999 Oct; 9(10):1009-22. PubMed ID: 10521537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of N-linked glycosylation sites using position relative features and statistical moments.
    Akmal MA; Rasool N; Khan YD
    PLoS One; 2017; 12(8):e0181966. PubMed ID: 28797096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.
    Wang X; Li C; Li F; Sharma VS; Song J; Webb GI
    BMC Bioinformatics; 2019 Nov; 20(1):602. PubMed ID: 31752668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Prediction of N- and O-Linked Glycosylation Sites for Human and Mouse Proteins.
    Taherzadeh G; Campbell M; Zhou Y
    Methods Mol Biol; 2022; 2499():177-186. PubMed ID: 35696081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection.
    Song J; Wang H; Wang J; Leier A; Marquez-Lago T; Yang B; Zhang Z; Akutsu T; Webb GI; Daly RJ
    Sci Rep; 2017 Jul; 7(1):6862. PubMed ID: 28761071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction.
    Tsaousis GN; Bagos PG; Hamodrakas SJ
    Biochim Biophys Acta; 2014 Feb; 1844(2):316-22. PubMed ID: 24225132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nglyc: A Random Forest Method for Prediction of N-Glycosylation Sites in Eukaryotic Protein Sequence.
    Pugalenthi G; Nithya V; Chou KC; Archunan G
    Protein Pept Lett; 2020; 27(3):178-186. PubMed ID: 31577193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational prediction of N-linked glycosylation incorporating structural properties and patterns.
    Chuang GY; Boyington JC; Joyce MG; Zhu J; Nabel GJ; Kwong PD; Georgiev I
    Bioinformatics; 2012 Sep; 28(17):2249-55. PubMed ID: 22782545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systems analysis of singly and multiply O-glycosylated peptides in the human serum glycoproteome via EThcD and HCD mass spectrometry.
    Zhang Y; Xie X; Zhao X; Tian F; Lv J; Ying W; Qian X
    J Proteomics; 2018 Jan; 170():14-27. PubMed ID: 28970103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Struct-NB: predicting protein-RNA binding sites using structural features.
    Towfic F; Caragea C; Gemperline DC; Dobbs D; Honavar V
    Int J Data Min Bioinform; 2010; 4(1):21-43. PubMed ID: 20300450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.
    Song J; Li F; Leier A; Marquez-Lago TT; Akutsu T; Haffari G; Chou KC; Webb GI; Pike RN; Hancock J
    Bioinformatics; 2018 Feb; 34(4):684-687. PubMed ID: 29069280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GalNAc-transferase specificity prediction based on feature selection method.
    Lu L; Niu B; Zhao J; Liu L; Lu WC; Liu XJ; Li YX; Cai YD
    Peptides; 2009 Feb; 30(2):359-64. PubMed ID: 18955094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery.
    Zielinska DF; Gnad F; Schropp K; Wiśniewski JR; Mann M
    Mol Cell; 2012 May; 46(4):542-8. PubMed ID: 22633491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position-specific prediction of methylation sites from sequence conservation based on information theory.
    Shi Y; Guo Y; Hu Y; Li M
    Sci Rep; 2015 Jul; 5():12403. PubMed ID: 26202727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC.
    Xie HL; Fu L; Nie XD
    Protein Eng Des Sel; 2013 Nov; 26(11):735-42. PubMed ID: 24048266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.