These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 27708373)
1. GlycoMine Li F; Li C; Revote J; Zhang Y; Webb GI; Li J; Song J; Lithgow T Sci Rep; 2016 Oct; 6():34595. PubMed ID: 27708373 [TBL] [Abstract][Full Text] [Related]
2. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279 [TBL] [Abstract][Full Text] [Related]
3. Positive-unlabelled learning of glycosylation sites in the human proteome. Li F; Zhang Y; Purcell AW; Webb GI; Chou KC; Lithgow T; Li C; Song J BMC Bioinformatics; 2019 Mar; 20(1):112. PubMed ID: 30841845 [TBL] [Abstract][Full Text] [Related]
4. GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes. Joshi HJ; Jørgensen A; Schjoldager KT; Halim A; Dworkin LA; Steentoft C; Wandall HH; Clausen H; Vakhrushev SY Glycobiology; 2018 Mar; 28(3):131-136. PubMed ID: 29267884 [TBL] [Abstract][Full Text] [Related]
5. HOTGpred: Enhancing human O-linked threonine glycosylation prediction using integrated pretrained protein language model-based features and multi-stage feature selection approach. Pham NT; Zhang Y; Rakkiyappan R; Manavalan B Comput Biol Med; 2024 Sep; 179():108859. PubMed ID: 39029431 [TBL] [Abstract][Full Text] [Related]
6. SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Taherzadeh G; Dehzangi A; Golchin M; Zhou Y; Campbell MP Bioinformatics; 2019 Oct; 35(20):4140-4146. PubMed ID: 30903686 [TBL] [Abstract][Full Text] [Related]
7. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. Gupta R; Jung E; Gooley AA; Williams KL; Brunak S; Hansen J Glycobiology; 1999 Oct; 9(10):1009-22. PubMed ID: 10521537 [TBL] [Abstract][Full Text] [Related]
8. Prediction of N-linked glycosylation sites using position relative features and statistical moments. Akmal MA; Rasool N; Khan YD PLoS One; 2017; 12(8):e0181966. PubMed ID: 28797096 [TBL] [Abstract][Full Text] [Related]
9. Computational Prediction of N- and O-Linked Glycosylation Sites for Human and Mouse Proteins. Taherzadeh G; Campbell M; Zhou Y Methods Mol Biol; 2022; 2499():177-186. PubMed ID: 35696081 [TBL] [Abstract][Full Text] [Related]
10. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Song J; Wang H; Wang J; Leier A; Marquez-Lago T; Yang B; Zhang Z; Akutsu T; Webb GI; Daly RJ Sci Rep; 2017 Jul; 7(1):6862. PubMed ID: 28761071 [TBL] [Abstract][Full Text] [Related]
11. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction. Tsaousis GN; Bagos PG; Hamodrakas SJ Biochim Biophys Acta; 2014 Feb; 1844(2):316-22. PubMed ID: 24225132 [TBL] [Abstract][Full Text] [Related]
12. Nglyc: A Random Forest Method for Prediction of N-Glycosylation Sites in Eukaryotic Protein Sequence. Pugalenthi G; Nithya V; Chou KC; Archunan G Protein Pept Lett; 2020; 27(3):178-186. PubMed ID: 31577193 [TBL] [Abstract][Full Text] [Related]
14. Systems analysis of singly and multiply O-glycosylated peptides in the human serum glycoproteome via EThcD and HCD mass spectrometry. Zhang Y; Xie X; Zhao X; Tian F; Lv J; Ying W; Qian X J Proteomics; 2018 Jan; 170():14-27. PubMed ID: 28970103 [TBL] [Abstract][Full Text] [Related]
15. Struct-NB: predicting protein-RNA binding sites using structural features. Towfic F; Caragea C; Gemperline DC; Dobbs D; Honavar V Int J Data Min Bioinform; 2010; 4(1):21-43. PubMed ID: 20300450 [TBL] [Abstract][Full Text] [Related]
16. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Song J; Li F; Leier A; Marquez-Lago TT; Akutsu T; Haffari G; Chou KC; Webb GI; Pike RN; Hancock J Bioinformatics; 2018 Feb; 34(4):684-687. PubMed ID: 29069280 [TBL] [Abstract][Full Text] [Related]
17. GalNAc-transferase specificity prediction based on feature selection method. Lu L; Niu B; Zhao J; Liu L; Lu WC; Liu XJ; Li YX; Cai YD Peptides; 2009 Feb; 30(2):359-64. PubMed ID: 18955094 [TBL] [Abstract][Full Text] [Related]
18. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Zielinska DF; Gnad F; Schropp K; Wiśniewski JR; Mann M Mol Cell; 2012 May; 46(4):542-8. PubMed ID: 22633491 [TBL] [Abstract][Full Text] [Related]
19. Position-specific prediction of methylation sites from sequence conservation based on information theory. Shi Y; Guo Y; Hu Y; Li M Sci Rep; 2015 Jul; 5():12403. PubMed ID: 26202727 [TBL] [Abstract][Full Text] [Related]
20. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC. Xie HL; Fu L; Nie XD Protein Eng Des Sel; 2013 Nov; 26(11):735-42. PubMed ID: 24048266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]