These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 27708380)

  • 21. Interference of Temporally Distinguishable Photons Using Frequency-Resolved Detection.
    Orre VV; Goldschmidt EA; Deshpande A; Gorshkov AV; Tamma V; Hafezi M; Mittal S
    Phys Rev Lett; 2019 Sep; 123(12):123603. PubMed ID: 31633982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths.
    Kuo PS; Gerrits T; Verma VB; Nam SW
    Opt Lett; 2016 Nov; 41(21):5074-5077. PubMed ID: 27805689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing.
    Wang S; Lu P; Mao L; Liu D; Jiang S
    Opt Express; 2015 Jan; 23(2):674-80. PubMed ID: 25835827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence.
    Lingaraju NB; Lu HH; Seshadri S; Imany P; Leaird DE; Lukens JM; Weiner AM
    Opt Express; 2019 Dec; 27(26):38683-38697. PubMed ID: 31878631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-based control of spin-orbit vector modes of light in biphoton interference.
    Leary CC; Lankford M; Sundarraman D
    Opt Express; 2016 Jun; 24(13):14227-41. PubMed ID: 27410580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons.
    Quan R; Zhai Y; Wang M; Hou F; Wang S; Xiang X; Liu T; Zhang S; Dong R
    Sci Rep; 2016 Jul; 6():30453. PubMed ID: 27452276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete three photon Hong-Ou-Mandel interference at a three port device.
    Mährlein S; von Zanthier J; Agarwal GS
    Opt Express; 2015 Jun; 23(12):15833-47. PubMed ID: 26193562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified sCMOS camera.
    Jachura M; Chrapkiewicz R
    Opt Lett; 2015 Apr; 40(7):1540-3. PubMed ID: 25831379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bounding the outcome of a two-photon interference measurement using weak coherent states.
    Aragoneses A; Islam NT; Eggleston M; Lezama A; Kim J; Gauthier DJ
    Opt Lett; 2018 Aug; 43(16):3806-3809. PubMed ID: 30106888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multicolor quantum metrology with entangled photons.
    Bell B; Kannan S; McMillan A; Clark AS; Wadsworth WJ; Rarity JG
    Phys Rev Lett; 2013 Aug; 111(9):093603. PubMed ID: 24033035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
    Li Y; Zhou ZY; Ding DS; Shi BS
    Opt Express; 2015 Nov; 23(22):28792-800. PubMed ID: 26561148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indistinguishable photons from a single molecule.
    Kiraz A; Ehrl M; Hellerer T; Müstecaplioğlu OE; Bräuchle C; Zumbusch A
    Phys Rev Lett; 2005 Jun; 94(22):223602. PubMed ID: 16090394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency-domain Hong-Ou-Mandel interference with linear optics.
    Imany P; Odele OD; Alshaykh MS; Lu HH; Leaird DE; Weiner AM
    Opt Lett; 2018 Jun; 43(12):2760-2763. PubMed ID: 29905682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.
    Kwon O; Ra YS; Kim YH
    Opt Express; 2009 Jul; 17(15):13059-69. PubMed ID: 19654710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hong-Ou-Mandel Interference between Two Hyperentangled Photons Enables Observation of Symmetric and Antisymmetric Particle Exchange Phases.
    Liu ZF; Chen C; Xu JM; Cheng ZM; Ren ZC; Dong BW; Lou YC; Yang YX; Xue ST; Liu ZH; Zhu WZ; Wang XL; Wang HT
    Phys Rev Lett; 2022 Dec; 129(26):263602. PubMed ID: 36608177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrostatic Pressure and Temperature Measurements Using an In-Line Mach-Zehnder Interferometer Based on a Two-Mode Highly Birefringent Microstructured Fiber.
    Statkiewicz-Barabach G; Olszewski J; Mergo P; Urbanczyk W
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28718796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attosecond-Level Delay Sensing via Temporal Quantum Erasing.
    Sgobba F; Andrisani A; Dello Russo S; Siciliani de Cumis M; Santamaria Amato L
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles.
    Qian P; Gu Z; Cao R; Wen R; Ou ZY; Chen JF; Zhang W
    Phys Rev Lett; 2016 Jul; 117(1):013602. PubMed ID: 27419568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wave-particle duality of light appearing in an intensity interferometric scenario.
    Ikuta R
    Opt Express; 2022 Dec; 30(26):46972-46981. PubMed ID: 36558635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hong-Ou-Mandel Interference with a Single Atom.
    Ralley KA; Lerner IV; Yurkevich IV
    Sci Rep; 2015 Sep; 5():13947. PubMed ID: 26365761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.