These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27708608)

  • 21. Semantic incongruity influences response caution in audio-visual integration.
    Steinweg B; Mast FW
    Exp Brain Res; 2017 Jan; 235(1):349-363. PubMed ID: 27734118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task.
    Zhong JY; Moffat SD
    Front Aging Neurosci; 2016; 8():122. PubMed ID: 27303290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of semantically congruent and incongruent visual information on auditory object recognition across development.
    Thomas RL; Nardini M; Mareschal D
    J Exp Child Psychol; 2017 Oct; 162():72-88. PubMed ID: 28595113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of congruent and incongruent visual cues on speech perception and brain activity in cochlear implant users.
    Song JJ; Lee HJ; Kang H; Lee DS; Chang SO; Oh SH
    Brain Struct Funct; 2015 Mar; 220(2):1109-25. PubMed ID: 24402676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential Representation of Landmark and Self-Motion Information along the CA1 Radial Axis: Self-Motion Generated Place Fields Shift toward Landmarks during Septal Inactivation.
    Fattahi M; Sharif F; Geiller T; Royer S
    J Neurosci; 2018 Jul; 38(30):6766-6778. PubMed ID: 29954846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence consistent with the multiple-bearings hypothesis from human virtual landmark-based navigation.
    Forloines MR; Bodily KD; Sturz BR
    Front Psychol; 2015; 6():488. PubMed ID: 25972823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Object familiarity and semantic congruency modulate responses in cortical audiovisual integration areas.
    Hein G; Doehrmann O; Müller NG; Kaiser J; Muckli L; Naumer MJ
    J Neurosci; 2007 Jul; 27(30):7881-7. PubMed ID: 17652579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using virtual environments to investigate wayfinding in 8- to 12-year-olds and adults.
    Lingwood J; Blades M; Farran EK; Courbois Y; Matthews D
    J Exp Child Psychol; 2018 Feb; 166():178-189. PubMed ID: 28941380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eye-Movements During Navigation in a Virtual Environment: Sex Differences and Relationship to Sex Hormones.
    Harris T; Hagg J; Pletzer B
    Front Neurosci; 2022; 16():755393. PubMed ID: 35573293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ERP correlates of spatially incongruent object identification during scene viewing: contextual expectancy versus simultaneous processing.
    Demiral SB; Malcolm GL; Henderson JM
    Neuropsychologia; 2012 Jun; 50(7):1271-85. PubMed ID: 22391475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wayfinding and Glaucoma: A Virtual Reality Experiment.
    Daga FB; Macagno E; Stevenson C; Elhosseiny A; Diniz-Filho A; Boer ER; Schulze J; Medeiros FA
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3343-3349. PubMed ID: 28687845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The path more travelled: Time pressure increases reliance on familiar route-based strategies during navigation.
    Brunyé TT; Wood MD; Houck LA; Taylor HA
    Q J Exp Psychol (Hove); 2017 Aug; 70(8):1439-1452. PubMed ID: 27156528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The left fusiform gyrus hosts trisensory representations of manipulable objects.
    Kassuba T; Klinge C; Hölig C; Menz MM; Ptito M; Röder B; Siebner HR
    Neuroimage; 2011 Jun; 56(3):1566-77. PubMed ID: 21334444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Navigation assistance: a trade-off between wayfinding support and configural learning support.
    Münzer S; Zimmer HD; Baus J
    J Exp Psychol Appl; 2012 Mar; 18(1):18-37. PubMed ID: 22141461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encouraging 5-year olds to attend to landmarks: a way to improve children's wayfinding strategies in a virtual environment.
    Lingwood J; Blades M; Farran EK; Courbois Y; Matthews D
    Front Psychol; 2015; 6():174. PubMed ID: 25814960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual homing in the absence of feature-based landmark information.
    Gillner S; Weiss AM; Mallot HA
    Cognition; 2008 Oct; 109(1):105-22. PubMed ID: 18804202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining path integration and remembered landmarks when navigating without vision.
    Kalia AA; Schrater PR; Legge GE
    PLoS One; 2013; 8(9):e72170. PubMed ID: 24039742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual, haptic and cross-modal recognition of objects and scenes.
    Woods AT; Newell FN
    J Physiol Paris; 2004; 98(1-3):147-59. PubMed ID: 15477029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency.
    Gleiss S; Kayser C
    Neuropsychologia; 2014 Jan; 53():84-93. PubMed ID: 24262657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neural wayfinding mechanism adjusts for ambiguous landmark information.
    Janzen G; Jansen C
    Neuroimage; 2010 Aug; 52(1):364-70. PubMed ID: 20381625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.