These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27708681)

  • 1. Comparative localization of serotonin-like immunoreactive cells in Thaliacea informs tunicate phylogeny.
    Valero-Gracia A; Marino R; Crocetta F; Nittoli V; Tiozzo S; Sordino P
    Front Zool; 2016; 13():45. PubMed ID: 27708681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic analysis of phenotypic characters of Tunicata supports basal Appendicularia and monophyletic Ascidiacea.
    Braun K; Leubner F; Stach T
    Cladistics; 2020 Jun; 36(3):259-300. PubMed ID: 34618973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical study of the nervous system of the tunicate Thalia democratica (Forsskal, 1775).
    Pennati R; Dell'Anna A; Zega G; De Bernardi F
    Eur J Histochem; 2012 Apr; 56(2):e16. PubMed ID: 22688297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models.
    Tsagkogeorga G; Turon X; Hopcroft RR; Tilak MK; Feldstein T; Shenkar N; Loya Y; Huchon D; Douzery EJ; Delsuc F
    BMC Evol Biol; 2009 Aug; 9():187. PubMed ID: 19656395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oral sensory structures of Thaliacea (Tunicata) and consideration of the evolution of hair cells in Chordata.
    Caicci F; Gasparini F; Rigon F; Zaniolo G; Burighel P; Manni L
    J Comp Neurol; 2013 Aug; 521(12):2756-71. PubMed ID: 23386364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny of Tunicata inferred from molecular and morphological characters.
    Stach T; Turbeville JM
    Mol Phylogenet Evol; 2002 Dec; 25(3):408-28. PubMed ID: 12450747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring Tunicate Relationships and the Evolution of the Tunicate Hox Cluster with the Genome of Corella inflata.
    DeBiasse MB; Colgan WN; Harris L; Davidson B; Ryan JF
    Genome Biol Evol; 2020 Jun; 12(6):948-964. PubMed ID: 32211845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon.
    Stemme T; Iliffe TM; Bicker G; Harzsch S; Koenemann S
    BMC Evol Biol; 2012 Sep; 12():168. PubMed ID: 22947030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda?
    Stemme T; Iliffe TM; von Reumont BM; Koenemann S; Harzsch S; Bicker G
    BMC Evol Biol; 2013 Jun; 13():119. PubMed ID: 23758940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships.
    Harzsch S
    J Morphol; 2004 Feb; 259(2):198-213. PubMed ID: 14755751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-microscopic immunocytochemistry of 5-hydroxytryptamine in the ascidian endostyle.
    Nilsson O; Fredriksson G; Ofverholm T; Ericson LE
    Cell Tissue Res; 1988 Jul; 253(1):137-43. PubMed ID: 2843284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenomics offers resolution of major tunicate relationships.
    Kocot KM; Tassia MG; Halanych KM; Swalla BJ
    Mol Phylogenet Evol; 2018 Apr; 121():166-173. PubMed ID: 29330139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy.
    Herranz M; Leander BS; Pardos F; Boyle MJ
    BMC Evol Biol; 2019 Apr; 19(1):86. PubMed ID: 30961520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phylogenomic framework and timescale for comparative studies of tunicates.
    Delsuc F; Philippe H; Tsagkogeorga G; Simion P; Tilak MK; Turon X; López-Legentil S; Piette J; Lemaire P; Douzery EJP
    BMC Biol; 2018 Apr; 16(1):39. PubMed ID: 29653534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular development in Novocrania anomala: evidence for the presence of serotonin and a spiralian-like apical organ in lecithotrophic brachiopod larvae.
    Altenburger A; Wanninger A
    Evol Dev; 2010; 12(1):16-24. PubMed ID: 20156279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative mapping of serotonin-immunoreactive neurons in the central nervous systems of nudibranch molluscs.
    Newcomb JM; Fickbohm DJ; Katz PS
    J Comp Neurol; 2006 Nov; 499(3):485-505. PubMed ID: 16998939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ventral nerve cord in Cephalocarida (Crustacea): new insights into the ground pattern of Tetraconata.
    Stegner ME; Brenneis G; Richter S
    J Morphol; 2014 Mar; 275(3):269-94. PubMed ID: 24186353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascidian molecular phylogeny inferred from mtDNA data with emphasis on the Aplousobranchiata.
    Turon X; López-Legentil S
    Mol Phylogenet Evol; 2004 Nov; 33(2):309-20. PubMed ID: 15336666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonin immunoreactivity in a highly enigmatic metazoan phylum, the pre-nervous Dicyemida.
    Czaker R
    Cell Tissue Res; 2006 Dec; 326(3):843-50. PubMed ID: 16826373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ.
    Kempf SC; Page LR; Pires A
    J Comp Neurol; 1997 Sep; 386(3):507-28. PubMed ID: 9303432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.