These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27709269)

  • 1. Can augmented feedback facilitate learning a reactive balance task among older adults?
    Mansfield A; Aqui A; Fraser JE; Rajachandrakumar R; Lakhani B; Patterson KK
    Exp Brain Res; 2017 Jan; 235(1):293-304. PubMed ID: 27709269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual feedback of the centre of gravity to optimize standing balance.
    Lakhani B; Mansfield A
    Gait Posture; 2015 Feb; 41(2):499-503. PubMed ID: 25542399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.
    Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T
    J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of task constraints in relating laboratory and clinical measures of balance.
    Kuznetsov NA; Riley MA
    Gait Posture; 2015 Sep; 42(3):275-9. PubMed ID: 26112778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voluntary control of forward leaning posture relates to low-frequency neural inputs to the medial gastrocnemius muscle.
    Watanabe T; Nojima I; Sugiura H; Yacoubi B; Christou EA
    Gait Posture; 2019 Feb; 68():187-192. PubMed ID: 30497039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larger center of pressure minus center of gravity in the elderly induces larger body acceleration during quiet standing.
    Masani K; Vette AH; Kouzaki M; Kanehisa H; Fukunaga T; Popovic MR
    Neurosci Lett; 2007 Jul; 422(3):202-6. PubMed ID: 17611029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical assessment of quiet standing and changes associated with aging.
    Panzer VP; Bandinelli S; Hallett M
    Arch Phys Med Rehabil; 1995 Feb; 76(2):151-7. PubMed ID: 7848073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural stability and trunk muscle responses to the static and perturbed balance tasks in individuals with and without symptomatic degenerative lumbar disease.
    Lin YC; Niu CC; Nikkhoo M; Lu ML; Chen WC; Fu CJ; Cheng CH
    Gait Posture; 2018 Jul; 64():159-164. PubMed ID: 29909230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compatibility of postural behavior induced by two aspects of visual feedback: time delay and scale display.
    Rougier P
    Exp Brain Res; 2005 Aug; 165(2):193-202. PubMed ID: 15875170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle co-contraction in elderly people change due to postural stability during single-leg standing.
    Iwamoto Y; Takahashi M; Shinkoda K
    J Physiol Anthropol; 2017 Dec; 36(1):43. PubMed ID: 29246187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spectral content of postural sway during quiet stance: influences of age, vision and somatosensory inputs.
    Singh NB; Taylor WR; Madigan ML; Nussbaum MA
    J Electromyogr Kinesiol; 2012 Feb; 22(1):131-6. PubMed ID: 22100720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Concurrent and Terminal Visual Feedback on Ankle Co-Contraction in Older Adults during Standing Balance.
    Vitali RV; Barone VJ; Ferris J; Stirling LA; Sienko KH
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnified visual feedback exacerbates positional variability in older adults due to altered modulation of the primary agonist muscle.
    Baweja HS; Kwon M; Christou EA
    Exp Brain Res; 2012 Oct; 222(4):355-64. PubMed ID: 22948735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative efficacy of various strategies for visual feedback in standing balance activities.
    Kennedy MW; Crowell CR; Striegel AD; Villano M; Schmiedeler JP
    Exp Brain Res; 2013 Sep; 230(1):117-25. PubMed ID: 23836111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
    Kilby MC; Molenaar PC; Slobounov SM; Newell KM
    Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual reliance for balance control in older adults persists when visual information is disrupted by artificial feedback delays.
    Yeh TT; Cluff T; Balasubramaniam R
    PLoS One; 2014; 9(3):e91554. PubMed ID: 24614576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing.
    Vuillerme N; Pinsault N; Chenu O; Boisgontier M; Demongeot J; Payan Y
    Exp Brain Res; 2007 Aug; 181(4):547-54. PubMed ID: 17476487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint coordination in young and older adults during quiet stance: effect of visual feedback of the center of pressure.
    Freitas SM; Duarte M
    Gait Posture; 2012 Jan; 35(1):83-7. PubMed ID: 21962847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural responses explored through classical conditioning.
    Campbell AD; Dakin CJ; Carpenter MG
    Neuroscience; 2009 Dec; 164(3):986-97. PubMed ID: 19635526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ankle muscle activation on postural sway during quiet stance.
    Warnica MJ; Weaver TB; Prentice SD; Laing AC
    Gait Posture; 2014 Apr; 39(4):1115-21. PubMed ID: 24613374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.