BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27709326)

  • 1. Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea.
    Chen C; Hong M; Chu J; Huang M; Ouyang L; Tian X; Zhuang Y
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):201-209. PubMed ID: 27709326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea.
    Reeves AR; Brikun IA; Cernota WH; Leach BI; Gonzalez MC; Weber JM
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):600-9. PubMed ID: 16491356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea.
    Xu Z; Wang M; Ye BC
    J Bacteriol; 2017 Oct; 199(20):. PubMed ID: 28760847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea.
    Xu Z; Liu Y; Ye BC
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production.
    Reeves AR; Brikun IA; Cernota WH; Leach BI; Gonzalez MC; Weber JM
    Metab Eng; 2007 May; 9(3):293-303. PubMed ID: 17482861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An erythromycin process improvement using the diethyl methylmalonate-responsive (Dmr) phenotype of the Saccharopolyspora erythraea mutB strain.
    Weber JM; Cernota WH; Gonzalez MC; Leach BI; Reeves AR; Wesley RK
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1575-83. PubMed ID: 22048617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea.
    Wu H; Chen M; Mao Y; Li W; Liu J; Huang X; Zhou Y; Ye BC; Zhang L; Weaver DT; Zhang B
    Microb Cell Fact; 2014 Nov; 13():158. PubMed ID: 25391994
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hong M; Mou H; Liu X; Huang M; Chu J
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1337-1348. PubMed ID: 28567527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea.
    Minas W; Brünker P; Kallio PT; Bailey JE
    Biotechnol Prog; 1998; 14(4):561-6. PubMed ID: 9694676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea.
    Kirm B; Magdevska V; Tome M; Horvat M; Karničar K; Petek M; Vidmar R; Baebler S; Jamnik P; Fujs Š; Horvat J; Fonovič M; Turk B; Gruden K; Petković H; Kosec G
    Microb Cell Fact; 2013 Dec; 12():126. PubMed ID: 24341557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and engineering of the Lrp/AsnC family regulator SACE_5717 for erythromycin overproduction in Saccharopolyspora erythraea.
    Liu J; Chen Y; Li L; Yang E; Wang Y; Wu H; Zhang L; Wang W; Zhang B
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):1013-1024. PubMed ID: 31016583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis.
    Fedashchin A; Cernota WH; Gonzalez MC; Leach BI; Kwan N; Wesley RK; Weber JM
    FEMS Microbiol Lett; 2015 Nov; 362(22):. PubMed ID: 26468041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knocking out of tailoring genes eryK and eryG in an industrial erythromycin-producing strain of Saccharopolyspora erythraea leading to overproduction of erythromycin B, C and D at different conversion ratios.
    Zhang Q; Wu J; Qian J; Chu J; Zhuang Y; Zhang S; Liu W
    Lett Appl Microbiol; 2011 Feb; 52(2):129-37. PubMed ID: 21175699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via
    Xu F; Ke X; Hong M; Huang M; Chen C; Tian X; Hang H; Chu J
    Biochem Biophys Res Commun; 2021 Jan; 542():73-79. PubMed ID: 33497965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursor Supply for Erythromycin Biosynthesis: Engineering of Propionate Assimilation Pathway Based on Propionylation Modification.
    You D; Wang MM; Yin BC; Ye BC
    ACS Synth Biol; 2019 Feb; 8(2):371-380. PubMed ID: 30657660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea.
    Karničar K; Drobnak I; Petek M; Magdevska V; Horvat J; Vidmar R; Baebler Š; Rotter A; Jamnik P; Fujs Š; Turk B; Fonovič M; Gruden K; Kosec G; Petković H
    Microb Cell Fact; 2016 Jun; 15():93. PubMed ID: 27255285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea.
    Wu P; Pan H; Zhang C; Wu H; Yuan L; Huang X; Zhou Y; Ye BC; Weaver DT; Zhang L; Zhang B
    J Ind Microbiol Biotechnol; 2014 Jul; 41(7):1159-67. PubMed ID: 24793123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of an Lrp family regulator SACE_Lrp improves erythromycin production in Saccharopolyspora erythraea.
    Liu J; Chen Y; Wang W; Ren M; Wu P; Wang Y; Li C; Zhang L; Wu H; Weaver DT; Zhang B
    Metab Eng; 2017 Jan; 39():29-37. PubMed ID: 27794466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of erythromycin synthesis by disruption of malonyl-coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea.
    Hsieh YJ; Kolattukudy PE
    J Bacteriol; 1994 Feb; 176(3):714-24. PubMed ID: 8300527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyketide Starter and Extender Units Serve as Regulatory Ligands to Coordinate the Biosynthesis of Antibiotics in Actinomycetes.
    Wu P; Chen K; Li B; Zhang Y; Wu H; Chen Y; Ren S; Khan S; Zhang L; Zhang B
    mBio; 2021 Oct; 12(5):e0229821. PubMed ID: 34579580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.