These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Detection of Multiple Genome Modifications Induced by the CRISPR/Cas9 System. Ota S; Kawahara A Methods Mol Biol; 2016; 1451():53-63. PubMed ID: 27464800 [TBL] [Abstract][Full Text] [Related]
6. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415 [TBL] [Abstract][Full Text] [Related]
7. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes. Nakagawa Y; Sakuma T; Sakamoto T; Ohmuraya M; Nakagata N; Yamamoto T BMC Biotechnol; 2015 May; 15():33. PubMed ID: 25997509 [TBL] [Abstract][Full Text] [Related]
9. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Jo YI; Suresh B; Kim H; Ramakrishna S Biochim Biophys Acta; 2015 Dec; 1856(2):234-43. PubMed ID: 26434948 [TBL] [Abstract][Full Text] [Related]
10. Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii. Shen B; Brown K; Long S; Sibley LD Methods Mol Biol; 2017; 1498():79-103. PubMed ID: 27709570 [TBL] [Abstract][Full Text] [Related]
11. The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Zhu Z; González F; Huangfu D Methods Enzymol; 2014; 546():215-50. PubMed ID: 25398343 [TBL] [Abstract][Full Text] [Related]
13. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence. Finnigan GC; Thorner J G3 (Bethesda); 2016 Jul; 6(7):2147-56. PubMed ID: 27185399 [TBL] [Abstract][Full Text] [Related]
14. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of CRISPR/Cas9-Mediated Genome Engineering by a Type I Interferon-Induced Reduction in Guide RNA Expression. Machitani M; Sakurai F; Wakabayashi K; Nakatani K; Takayama K; Tachibana M; Mizuguchi H Biol Pharm Bull; 2017; 40(3):272-277. PubMed ID: 28250269 [TBL] [Abstract][Full Text] [Related]
16. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica. Schwartz C; Wheeldon I Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237 [TBL] [Abstract][Full Text] [Related]
17. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Kabadi AM; Ousterout DG; Hilton IB; Gersbach CA Nucleic Acids Res; 2014 Oct; 42(19):e147. PubMed ID: 25122746 [TBL] [Abstract][Full Text] [Related]
18. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae. Deaner M; Alper HS FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31665284 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium. Soh CL; Huangfu D Methods Mol Biol; 2017; 1498():57-78. PubMed ID: 27709569 [TBL] [Abstract][Full Text] [Related]
20. Expanding the Biologist's Toolkit with CRISPR-Cas9. Sternberg SH; Doudna JA Mol Cell; 2015 May; 58(4):568-74. PubMed ID: 26000842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]