These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27709639)

  • 1. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work.
    Ngo ST; Hung HM; Nguyen MT
    J Comput Chem; 2016 Dec; 37(31):2734-2742. PubMed ID: 27709639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of relative binding affinities of a series of HIV-1 protease inhibitors using semi-empirical quantum mechanical charge.
    Peng C; Wang J; Xu Z; Cai T; Zhu W
    J Comput Chem; 2020 Jul; 41(19):1773-1780. PubMed ID: 32352193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of polarization on HIV-1protease and fluoro-substituted inhibitors binding energies by large scale molecular dynamics simulations.
    Duan LL; Zhu T; Li YC; Zhang QG; Zhang JZ
    Sci Rep; 2017 Feb; 7():42223. PubMed ID: 28155907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the ligand-binding free energy of checkpoint kinase 1 via non-equilibrium MD simulations.
    Mai NT; Lan NT; Vu TY; Duong PTM; Tung NT; Phung HTT
    J Mol Graph Model; 2020 Nov; 100():107648. PubMed ID: 32653524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study.
    Maphumulo SI; Halder AK; Govender T; Maseko S; Maguire GEM; Honarparvar B; Kruger HG
    Chem Biol Drug Des; 2018 Nov; 92(5):1899-1913. PubMed ID: 30003668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease.
    Ngo ST; Quynh Anh Pham N; Thi Le L; Pham DH; Vu VV
    J Chem Inf Model; 2020 Dec; 60(12):5771-5780. PubMed ID: 32530282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis.
    Karnati KR; Wang Y
    J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK; Wright DW; Kenway OA; Coveney PV
    J Chem Inf Model; 2010 May; 50(5):890-905. PubMed ID: 20384328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of allosteric molecules on structure and drug affinity of HIV-1 protease by molecular dynamics simulations.
    Meng XM; Hu WJ; Mu YG; Sheng XH
    J Mol Graph Model; 2016 Nov; 70():153-162. PubMed ID: 27723563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the molecular mechanics and binding dynamics characteristics of potent inhibitors to HIV-1 protease.
    Li D; Liu MS; Ji B; Hwang KC; Huang Y
    Chem Biol Drug Des; 2012 Sep; 80(3):440-54. PubMed ID: 22621379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR.
    Ahmed SM; Kruger HG; Govender T; Maguire GE; Sayed Y; Ibrahim MA; Naicker P; Soliman ME
    Chem Biol Drug Des; 2013 Feb; 81(2):208-18. PubMed ID: 23017010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.
    Meher BR; Wang Y
    J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state.
    Chen X; Tropsha A
    J Med Chem; 1995 Jan; 38(1):42-8. PubMed ID: 7837238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations.
    Jenwitheesuk E; Samudrala R
    BMC Struct Biol; 2003 Apr; 3():2. PubMed ID: 12675950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. I36T↑T mutation in South African subtype C (C-SA) HIV-1 protease significantly alters protease-drug interactions.
    Maseko SB; Padayachee E; Govender T; Sayed Y; Kruger G; Maguire GEM; Lin J
    Biol Chem; 2017 Sep; 398(10):1109-1117. PubMed ID: 28525359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.