These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27709776)

  • 1. Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution.
    Kuang PY; Zheng PX; Liu ZQ; Lei JL; Wu H; Li N; Ma TY
    Small; 2016 Dec; 12(48):6735-6744. PubMed ID: 27709776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation.
    Smrithi SP; Kottam N; Narula A; Madhu GM; Mohammed R; Agilan R
    J Colloid Interface Sci; 2022 Dec; 627():956-968. PubMed ID: 35901574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving cadmium selenide-decorated zinc ferrite@titanium dioxide hollow core/shell nanospheres with improved light trapping and charge generation for photocatalytic hydrogen generation.
    Liu H; Chen Y; Li H; Jiang H; Tian G
    J Colloid Interface Sci; 2020 Sep; 575():158-167. PubMed ID: 32361232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot Synthesis of CdS Irregular Nanospheres Hybridized with Oxygen-Incorporated Defect-Rich MoS
    Zhang S; Yang H; Gao H; Cao R; Huang J; Xu X
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23635-23646. PubMed ID: 28608669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonepitaxial Gold-Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production.
    Chen W; Li X; Wang F; Javaid S; Pang Y; Chen J; Yin Z; Wang S; Li Y; Jia G
    Small; 2020 Mar; 16(12):e1902231. PubMed ID: 31769587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry.
    Yu W; Noureldine D; Isimjan T; Lin B; Del Gobbo S; Abulikemu M; Hedhili MN; Anjum DH; Takanabe K
    Phys Chem Chem Phys; 2015 Jan; 17(2):1001-9. PubMed ID: 25410936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide.
    Yu S; Xie Z; Ran M; Wu F; Zhong Y; Dan M; Zhou Y
    J Colloid Interface Sci; 2020 Aug; 573():71-77. PubMed ID: 32272299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst.
    Yuan YJ; Wang F; Hu B; Lu HW; Yu ZT; Zou ZG
    Dalton Trans; 2015 Jun; 44(24):10997-1003. PubMed ID: 25989095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of organic-inorganic cadmium sulfide/diethylenetriamine hybrids for efficient photocatalytic hydrogen production.
    Lv J; Liu J; Zhang J; Dai K; Liang C; Wang Z; Zhu G
    J Colloid Interface Sci; 2018 Feb; 512():77-85. PubMed ID: 29054009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology-engineered carbon quantum dots embedded on octahedral CdIn
    Wang Q; Wang L; Jiang Y; Liu Y; Zhang W; Zhang J; Olayemi Macauley AL
    Environ Res; 2022 Jun; 209():112800. PubMed ID: 35085566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Largely enhanced photocatalytic hydrogen production rate of CdS/(Au-ReS
    Liu J; Chen K; Pan GM; Luo ZJ; Xie Y; Li YY; Lin YJ; Hao ZH; Zhou L; Ding SJ; Wang QQ
    Nanoscale; 2018 Nov; 10(41):19586-19594. PubMed ID: 30324954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfide Ligands in Hybrid Semiconductor-Metal Nanocrystal Photocatalysts: Improved Hole Extraction and Altered Catalysis.
    Levi A; Verbitsky L; Waiskopf N; Banin U
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):647-653. PubMed ID: 34958193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjusting the Reduction Potential of Electrons by Quantum Confinement for Selective Photoreduction of CO
    Li A; Wang T; Li C; Huang Z; Luo Z; Gong J
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):3804-3808. PubMed ID: 30663836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods.
    Ben-Shahar Y; Scotognella F; Waiskopf N; Kriegel I; Dal Conte S; Cerullo G; Banin U
    Small; 2015 Jan; 11(4):462-71. PubMed ID: 25207751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots.
    Yu S; Fan XB; Wang X; Li J; Zhang Q; Xia A; Wei S; Wu LZ; Zhou Y; Patzke GR
    Nat Commun; 2018 Oct; 9(1):4009. PubMed ID: 30275447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.
    Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ
    ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Au NPs@MoS
    Guo S; Li X; Zhu J; Tong T; Wei B
    Small; 2016 Nov; 12(41):5692-5701. PubMed ID: 27594534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.