These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27709879)

  • 1. Real-Time Profiling of Solid-State Nanopores During Solution-Phase Nanofabrication.
    Bandara YM; Karawdeniya BI; Dwyer JR
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30583-30589. PubMed ID: 27709879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution.
    Briggs K; Charron M; Kwok H; Le T; Chahal S; Bustamante J; Waugh M; Tabard-Cossa V
    Nanotechnology; 2015 Feb; 26(8):084004. PubMed ID: 25648336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductance-Based Determination of Solid-State Nanopore Size and Shape: An Exploration of Performance Limits.
    Frament CM; Dwyer JR
    J Phys Chem C Nanomater Interfaces; 2012 Nov; 116(44):23315-23321. PubMed ID: 23750286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopore surface coating delivers nanopore size and shape through conductance-based sizing.
    Frament CM; Bandara N; Dwyer JR
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9330-7. PubMed ID: 24041089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation.
    Bandara YMNDY; Karawdeniya BI; Hagan JT; Chevalier RB; Dwyer JR
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30411-30420. PubMed ID: 31347369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore.
    Roshan KA; Tang Z; Guan W
    Nanotechnology; 2019 Mar; 30(9):095502. PubMed ID: 30523901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.
    Wen C; Zhang Z; Zhang SL
    ACS Sens; 2017 Oct; 2(10):1523-1530. PubMed ID: 28974095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides.
    Goto Y; Matsui K; Yanagi I; Takeda KI
    Nanoscale; 2019 Aug; 11(30):14426-14433. PubMed ID: 31334729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized Nanopore Fabrication via Controlled Breakdown.
    Ying C; Ma T; Xu L; Rahmani M
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching.
    Liebes Y; Hadad B; Ashkenasy N
    Nanotechnology; 2011 Jul; 22(28):285303. PubMed ID: 21636881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing nanopore surface chemistry through real-time measurements of nanopore conductance response to pH changes.
    Sheetz BS; Dwyer JR
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37812049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Deterministic Fabrication of Sub-5 Nanometer Solid-State Pores by Feedback-Controlled Laser Processing.
    Zvuloni E; Zrehen A; Gilboa T; Meller A
    ACS Nano; 2021 Jul; 15(7):12189-12200. PubMed ID: 34219449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication.
    Tang Z; Dong M; He X; Guan W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13383-13391. PubMed ID: 33705089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time shape approximation and fingerprinting of single proteins using a nanopore.
    Yusko EC; Bruhn BR; Eggenberger OM; Houghtaling J; Rollings RC; Walsh NC; Nandivada S; Pindrus M; Hall AR; Sept D; Li J; Kalonia DS; Mayer M
    Nat Nanotechnol; 2017 May; 12(4):360-367. PubMed ID: 27992411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.