These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27709980)

  • 21. Circumventing the deficit of context processing in schizophrenia: an event-related brain potential study.
    Debruille JB; Kumar N; Saheb D; Chintoh A; Gharghi D; Lionnet C; King S
    Int J Psychophysiol; 2010 Feb; 75(2):167-76. PubMed ID: 19819268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visuospatial attention in schizophrenia: deficits in broad monitoring.
    Hahn B; Robinson BM; Harvey AN; Kaiser ST; Leonard CJ; Luck SJ; Gold JM
    J Abnorm Psychol; 2012 Feb; 121(1):119-28. PubMed ID: 21604825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-subject classification of schizophrenia by event-related potentials during selective attention.
    Neuhaus AH; Popescu FC; Grozea C; Hahn E; Hahn C; Opgen-Rhein C; Urbanek C; Dettling M
    Neuroimage; 2011 Mar; 55(2):514-21. PubMed ID: 21182969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The attentional blink freezes spatial attention allocation to targets, not distractors: evidence from human electrophysiology.
    Pomerleau VJ; Fortier-Gauthier U; Corriveau I; McDonald JJ; Dell'Acqua R; Jolicœur P
    Brain Res; 2014 Apr; 1559():33-45. PubMed ID: 24607298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology.
    Jannati A; Gaspar JM; McDonald JJ
    J Exp Psychol Hum Percept Perform; 2013 Dec; 39(6):1713-30. PubMed ID: 23527999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophysiological indices of target and distractor processing in visual search.
    Hickey C; Di Lollo V; McDonald JJ
    J Cogn Neurosci; 2009 Apr; 21(4):760-75. PubMed ID: 18564048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Refining the Empirical Constraints on Computational Models of Spatial Working Memory in Schizophrenia.
    Gold JM; Bansal S; Anticevic A; Cho YT; Repovš G; Murray JD; Hahn B; Robinson BM; Luck SJ
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2020 Sep; 5(9):913-922. PubMed ID: 32741701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural correlates of visuo-spatial attention during an antisaccade task in schizophrenia: an ERP study.
    Tendolkar I; Ruhrmann S; Brockhaus-Dumke A; Pauli M; Mueller R; Pukrop R; Klosterkötter J
    Int J Neurosci; 2005 May; 115(5):681-98. PubMed ID: 15823932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attentional processing of multiple targets and distractors.
    Munneke J; Fait E; Mazza V
    Psychophysiology; 2013 Nov; 50(11):1104-8. PubMed ID: 23902254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of context in volitional control of feature-based attention.
    Belopolsky AV; Awh E
    J Exp Psychol Hum Percept Perform; 2016 Feb; 42(2):213-24. PubMed ID: 26348067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intact neural activity during a Go/No-go task is associated with high global functioning in schizophrenia.
    Araki T; Kirihara K; Koshiyama D; Nagai T; Tada M; Fukuda M; Kasai K
    Psychiatry Clin Neurosci; 2016 Jul; 70(7):278-85. PubMed ID: 26991316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-temporal dynamics of top-down control: directing attention to location and/or color as revealed by ERPs and source modeling.
    Slagter HA; Kok A; Mol N; Kenemans JL
    Brain Res Cogn Brain Res; 2005 Mar; 22(3):333-48. PubMed ID: 15722205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Hyperfocusing Hypothesis: A New Account of Cognitive Dysfunction in Schizophrenia.
    Luck SJ; Hahn B; Leonard CJ; Gold JM
    Schizophr Bull; 2019 Sep; 45(5):991-1000. PubMed ID: 31317191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the electrophysiological evidence for the capture of visual attention.
    McDonald JJ; Green JJ; Jannati A; Di Lollo V
    J Exp Psychol Hum Percept Perform; 2013 Jun; 39(3):849-60. PubMed ID: 23163789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oculomotor inhibition and location priming in schizophrenia.
    Bansal S; Gaspelin N; Robinson BM; Hahn B; Luck SJ; Gold JM
    J Abnorm Psychol; 2021 Aug; 130(6):651-664. PubMed ID: 34553960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective attention supports working memory maintenance by modulating perceptual processing of distractors.
    Sreenivasan KK; Jha AP
    J Cogn Neurosci; 2007 Jan; 19(1):32-41. PubMed ID: 17214561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Qualitative differences in the guidance of attention during single-color and multiple-color visual search: behavioral and electrophysiological evidence.
    Grubert A; Eimer M
    J Exp Psychol Hum Percept Perform; 2013 Oct; 39(5):1433-42. PubMed ID: 23244044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Schizophrenia patients show task switching deficits consistent with N-methyl-d-aspartate system dysfunction but not global executive deficits: implications for pathophysiology of executive dysfunction in schizophrenia.
    Wylie GR; Clark EA; Butler PD; Javitt DC
    Schizophr Bull; 2010 May; 36(3):585-94. PubMed ID: 18835838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is Attentional Filtering Impaired in Schizophrenia?
    Luck SJ; Leonard CJ; Hahn B; Gold JM
    Schizophr Bull; 2019 Sep; 45(5):1001-1011. PubMed ID: 31206163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired Filtering and Hyperfocusing: Neural Evidence for Distinct Selective Attention Abnormalities in People with Schizophrenia.
    Hahn B; Robinson BM; Kiat JE; Geng J; Bansal S; Luck SJ; Gold JM
    Cereb Cortex; 2022 Apr; 32(9):1950-1964. PubMed ID: 34546344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.