BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 27710797)

  • 41. Arsenic (III) removal by mechanochemically sulfidated microscale zero valent iron under anoxic and oxic conditions.
    Zhao J; Su A; Tian P; Tang X; Collins RN; He F
    Water Res; 2021 Jun; 198():117132. PubMed ID: 33878661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI.
    Sun F; Osseo-Asare KA; Chen Y; Dempsey BA
    J Hazard Mater; 2011 Nov; 196():311-7. PubMed ID: 21978585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pivotal effects of external Fe
    Liu T; Pei K; Wang Z; Wang ZL
    Environ Res; 2020 Oct; 189():109922. PubMed ID: 32980011
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrous ferric oxide incorporated diatomite for remediation of arsenic contaminated groundwater.
    Jang M; Min SH; Park JK; Tlachac EJ
    Environ Sci Technol; 2007 May; 41(9):3322-8. PubMed ID: 17539544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H
    Yang Z; Shan C; Zhang W; Jiang Z; Guan X; Pan B
    Water Res; 2016 Dec; 106():461-469. PubMed ID: 27764696
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Well-head arsenic removal units in remote villages of Indian subcontinent: field results and performance evaluation.
    Sarkar S; Gupta A; Biswas RK; Deb AK; Greenleaf JE; Sengupta AK
    Water Res; 2005 May; 39(10):2196-206. PubMed ID: 15913703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water.
    Xie S; Yuan S; Liao P; Tong M; Gan Y; Wang Y
    Environ Sci Technol; 2017 Jan; 51(2):889-896. PubMed ID: 27997144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluating configuration of dual unit ceramic filter for arsenic removal from highly contaminated groundwater.
    Shafiquzzaman M; Haider H
    J Environ Manage; 2022 Oct; 319():115664. PubMed ID: 35816962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.
    Planer-Friedrich B; Schaller J; Wismeth F; Mehlhorn J; Hug SJ
    Environ Sci Technol; 2018 May; 52(10):5931-5939. PubMed ID: 29671316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process.
    Callegari A; Ferronato N; Rada EC; Capodaglio AG; Torretta V
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26135-26143. PubMed ID: 29971744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).
    Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H
    Water Res; 2015 May; 75():224-48. PubMed ID: 25770444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stabilization of arsenic sludge with mechanochemically modified zero valent iron.
    Liang Y; Min X; Chai L; Wang M; Liyang W; Pan Q; Okido M
    Chemosphere; 2017 Feb; 168():1142-1151. PubMed ID: 27823780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values.
    Katsoyiannis IA; Voegelin A; Zouboulis AI; Hug SJ
    J Hazard Mater; 2015 Oct; 297():1-7. PubMed ID: 25935405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Embedding Fe(0) electrocoagulation in a biologically active As(III) oxidising filter bed.
    Roy M; Kraaijeveld E; Gude JCJ; van Genuchten CM; Rietveld LC; van Halem D
    Water Res; 2024 Mar; 252():121233. PubMed ID: 38330719
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor.
    Zacarías-Estrada OL; Ballinas-Casarrubias L; Montero-Cabrera ME; Loredo-Portales R; Orrantia-Borunda E; Luna-Velasco A
    J Hazard Mater; 2020 Feb; 384():121392. PubMed ID: 31704117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation--precipitation parameters.
    Tresintsi S; Simeonidis K; Vourlias G; Stavropoulos G; Mitrakas M
    Water Res; 2012 Oct; 46(16):5255-67. PubMed ID: 22824674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells.
    Hosseini SM; Tosco T; Ataie-Ashtiani B; Simmons CT
    J Contam Hydrol; 2018 Mar; 210():50-64. PubMed ID: 29519731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.