BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27710926)

  • 1. Collective responses of a large mackerel school depend on the size and speed of a robotic fish but not on tail motion.
    Kruusmaa M; Rieucau G; Montoya JC; Markna R; Handegard NO
    Bioinspir Biomim; 2016 Oct; 11(5):056020. PubMed ID: 27710926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z; Yang X; Wang T; Wen L
    Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
    Marras S; Porfiri M
    J R Soc Interface; 2012 Aug; 9(73):1856-68. PubMed ID: 22356819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators.
    Shintake J; Cacucciolo V; Shea H; Floreano D
    Soft Robot; 2018 Aug; 5(4):466-474. PubMed ID: 29957131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Collective Behaviour and Electrocommunication in the Weakly Electric Fish, Mormyrus rume, through a biomimetic Robotic Dummy Fish.
    Donati E; Worm M; Mintchev S; van der Wiel M; Benelli G; von der Emde G; Stefanini C
    Bioinspir Biomim; 2016 Dec; 11(6):066009. PubMed ID: 27906686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salmon behavioural response to robots in an aquaculture sea cage.
    Kruusmaa M; Gkliva R; Tuhtan JA; Tuvikene A; Alfredsen JA
    R Soc Open Sci; 2020 Mar; 7(3):191220. PubMed ID: 32269784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.
    Butail S; Polverino G; Phamduy P; Del Sette F; Porfiri M
    Behav Brain Res; 2014 Dec; 275():269-80. PubMed ID: 25239605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective response of zebrafish shoals to a free-swimming robotic fish.
    Butail S; Bartolini T; Porfiri M
    PLoS One; 2013; 8(10):e76123. PubMed ID: 24146825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies to modulate zebrafish collective dynamics with a closed-loop biomimetic robotic system.
    Chemtob Y; Cazenille L; Bonnet F; Gribovskiy A; Mondada F; Halloy J
    Bioinspir Biomim; 2020 May; 15(4):046004. PubMed ID: 32252047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots.
    Ko H; Lauder G; Nagpal R
    J R Soc Interface; 2023 Oct; 20(207):20230357. PubMed ID: 37876271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires.
    Jin H; Dong E; Alici G; Mao S; Min X; Liu C; Low KH; Yang J
    Bioinspir Biomim; 2016 Sep; 11(5):056012. PubMed ID: 27609700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bio-inspired electrocommunication system for small underwater robots.
    Wang W; Liu J; Xie G; Wen L; Zhang J
    Bioinspir Biomim; 2017 Mar; 12(3):036002. PubMed ID: 28220758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color.
    Abaid N; Bartolini T; Macrì S; Porfiri M
    Behav Brain Res; 2012 Aug; 233(2):545-53. PubMed ID: 22677270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Social competence improves the performance of biomimetic robots leading live fish.
    Maxeiner M; Hocke M; Moenck HJ; Gebhardt GHW; Weimar N; Musiolek L; Krause J; Bierbach D; Landgraf T
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37015241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.
    Esposito CJ; Tangorra JL; Flammang BE; Lauder GV
    J Exp Biol; 2012 Jan; 215(Pt 1):56-67. PubMed ID: 22162853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test.
    Kopman V; Laut J; Polverino G; Porfiri M
    J R Soc Interface; 2013 Jan; 10(78):20120540. PubMed ID: 23152102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-inspired vision based robot control using featureless estimations of time-to-contact.
    Zhang H; Zhao J
    Bioinspir Biomim; 2017 Jan; 12(2):025001. PubMed ID: 27973340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Soft Underwater Robot Inspired by the Red Muscle and Tendon Structure of Fish.
    Aragaki D; Nishimura T; Sato R; Ming A
    Biomimetics (Basel); 2023 Mar; 8(2):. PubMed ID: 37092385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish-inspired robotic algorithm: mimicking behaviour and communication of schooling fish.
    Connor J; Joordens M; Champion B
    Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37714177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.