These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27710926)

  • 21. How mimetic should a robotic fish be to socially integrate into zebrafish groups?
    Cazenille L; Collignon B; Chemtob Y; Bonnet F; Gribovskiy A; Mondada F; Bredeche N; Halloy J
    Bioinspir Biomim; 2018 Jan; 13(2):025001. PubMed ID: 28952466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How does school size affect tail beat frequency in turbulent water?
    Halsey LG; Wright S; Racz A; Metcalfe JD; Killen SS
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Apr; 218():63-69. PubMed ID: 29408691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.
    Xu L; Chen HQ; Zou J; Dong WT; Gu GY; Zhu LM; Zhu XY
    Bioinspir Biomim; 2017 Jan; 12(2):025003. PubMed ID: 28141580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. School density affects the strength of collective avoidance responses in wild-caught Atlantic herring Clupea harengus: a simulated predator encounter experiment.
    Rieucau G; De Robertis A; Boswell KM; Handegard NO
    J Fish Biol; 2014 Nov; 85(5):1650-64. PubMed ID: 25243659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EuMoBot: replicating euglenoid movement in a soft robot.
    Digumarti KM; Conn AT; Rossiter J
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30464056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A miniaturized wall-climbing segment robot inspired by caterpillar locomotion.
    Han IH; Yi H; Song CW; Jeong HE; Lee SY
    Bioinspir Biomim; 2017 Jun; 12(4):046003. PubMed ID: 28492374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish.
    Lei L; Escobedo R; Sire C; Theraulaz G
    PLoS Comput Biol; 2020 Mar; 16(3):e1007194. PubMed ID: 32176680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish.
    Li L; Ravi S; Xie G; Couzin ID
    Proc Math Phys Eng Sci; 2021 May; 477(2249):20200810. PubMed ID: 35153556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Group-level patterns emerge from individual speed as revealed by an extremely social robotic fish.
    Jolles JW; Weimar N; Landgraf T; Romanczuk P; Krause J; Bierbach D
    Biol Lett; 2020 Sep; 16(9):20200436. PubMed ID: 32933404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tail use improves performance on soft substrates in models of early vertebrate land locomotors.
    McInroe B; Astley HC; Gong C; Kawano SM; Schiebel PE; Rieser JM; Choset H; Blob RW; Goldman DI
    Science; 2016 Jul; 353(6295):154-8. PubMed ID: 27387947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single actuator wave-like robot (SAW): design, modeling, and experiments.
    Zarrouk D; Mann M; Degani N; Yehuda T; Jarbi N; Hess A
    Bioinspir Biomim; 2016 Jul; 11(4):046004. PubMed ID: 27367548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zebrafish (Danio rerio) behavioural response to bioinspired robotic fish and mosquitofish (Gambusia affinis).
    Polverino G; Porfiri M
    Bioinspir Biomim; 2013 Dec; 8(4):044001. PubMed ID: 23999758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
    Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY
    Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals.
    Polverino G; Abaid N; Kopman V; Macrì S; Porfiri M
    Bioinspir Biomim; 2012 Sep; 7(3):036019. PubMed ID: 22677608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploration of underwater life with an acoustically controlled soft robotic fish.
    Katzschmann RK; DelPreto J; MacCurdy R; Rus D
    Sci Robot; 2018 Mar; 3(16):. PubMed ID: 33141748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Worker selection of safe speed and idle condition in simulated monitoring of two industrial robots.
    Karwowski W; Rahimi M
    Ergonomics; 1991 May; 34(5):531-46. PubMed ID: 1884709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.