These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27711447)

  • 1. Pyrite surface environment drives molecular adsorption: cystine on pyrite(100) investigated by X-ray photoemission spectroscopy and low energy electron diffraction.
    Sanchez-Arenillas M; Mateo-Marti E
    Phys Chem Chem Phys; 2016 Oct; 18(39):27219-27225. PubMed ID: 27711447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet Irradiation on a Pyrite Surface Improves Triglycine Adsorption.
    Galvez-Martinez S; Mateo-Marti E
    Life (Basel); 2018 Oct; 8(4):. PubMed ID: 30366364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine at the pyrite-water interface: the role of surface defects.
    Nair NN; Schreiner E; Marx D
    J Am Chem Soc; 2006 Oct; 128(42):13815-26. PubMed ID: 17044710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of XPS in the removal of Se(IV) from groundwater with pyrite].
    Liu HF; Qian TW; Zhang MG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):543-6. PubMed ID: 25970929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.
    Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A
    Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides.
    Schreiner E; Nair NN; Wittekindt C; Marx D
    J Am Chem Soc; 2011 Jun; 133(21):8216-26. PubMed ID: 21561111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective adsorption of Mycobacterium Phlei on pyrite and sphalerite.
    Jia CY; Wei DZ; Li PJ; Li XJ; Tai PD; Liu W; Gong ZQ
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):214-9. PubMed ID: 21195591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-level insights into mercury removal mechanism by pyrite.
    Yang Y; Liu J; Liu F; Wang Z; Miao S
    J Hazard Mater; 2018 Feb; 344():104-112. PubMed ID: 29032091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio simulations of desorption and reactivity of glycine at a water-pyrite interface at "iron-sulfur world" prebiotic conditions.
    Pollet R; Boehme C; Marx D
    Orig Life Evol Biosph; 2006 Aug; 36(4):363-79. PubMed ID: 16572295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Granular activated carbon/pyrite composites for environmental application: synthesis and characterization.
    Liang C; Lee PH
    J Hazard Mater; 2012 Sep; 231-232():120-6. PubMed ID: 22795588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): spectroscopic and microscopic analyses.
    Han DS; Batchelor B; Abdel-Wahab A
    J Colloid Interface Sci; 2012 Feb; 368(1):496-504. PubMed ID: 22122947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflexible stoichiometry in bulk pyrite FeS
    McAuliffe RD; Shoemaker DP
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2018 Oct; 74(Pt 5):436-444. PubMed ID: 30297549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Mar; 62(10):1726-35. PubMed ID: 16084558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on the reaction path of pyrite (FeS
    Tian Y; Zhou X; Liu M; Zhang J; Wang W; Song Z; Zhao X
    Chemosphere; 2023 Nov; 340():139789. PubMed ID: 37598948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron pyrite thin films synthesized from an Fe(acac)3 ink.
    Seefeld S; Limpinsel M; Liu Y; Farhi N; Weber A; Zhang Y; Berry N; Kwon YJ; Perkins CL; Hemminger JC; Wu R; Law M
    J Am Chem Soc; 2013 Mar; 135(11):4412-24. PubMed ID: 23398377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen adsorption and desorption at iron pyrite FeS2{100} surfaces.
    Liu T; Temprano I; Jenkins SJ; King DA; Driver SM
    Phys Chem Chem Phys; 2012 Aug; 14(32):11491-9. PubMed ID: 22801863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of mercury by pyrite (FeS2).
    Bower J; Savage KS; Weinman B; Barnett MO; Hamilton WP; Harper WF
    Environ Pollut; 2008 Nov; 156(2):504-14. PubMed ID: 18367298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sulfur-deficient defect and water on rearrangements of formamide on pyrite (100) surface.
    Nguyen HT; Nguyen MT
    J Phys Chem A; 2014 Jun; 118(23):4079-86. PubMed ID: 24832217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.
    Niu X; Ruan R; Xia L; Li L; Sun H; Jia Y; Tan Q
    Langmuir; 2018 Feb; 34(8):2716-2724. PubMed ID: 29377706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals.
    Cabán-Acevedo M; Kaiser NS; English CR; Liang D; Thompson BJ; Chen HE; Czech KJ; Wright JC; Hamers RJ; Jin S
    J Am Chem Soc; 2014 Dec; 136(49):17163-79. PubMed ID: 25399991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.