These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 27711454)
1. Calculation of Raman parameters of real-size zigzag (n, 0) single-walled carbon nanotubes using finite-size models. Kupka T; Stachów M; Stobiński L; Kaminský J Phys Chem Chem Phys; 2016 Sep; 18(36):25058-25069. PubMed ID: 27711454 [TBL] [Abstract][Full Text] [Related]
2. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts. Kupka T; Stachów M; Stobiński L; Kaminský J J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813 [TBL] [Abstract][Full Text] [Related]
3. DFT calculations of structures, (13)C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walled carbon nanotubes. Kupka T; Chełmecka E; Pasterny K; Stachów M; Stobiński L Magn Reson Chem; 2012 Feb; 50(2):142-51. PubMed ID: 22354820 [TBL] [Abstract][Full Text] [Related]
4. DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs). Kupka T; Stachów M; Nieradka M; Stobiński L Magn Reson Chem; 2011 Sep; 49(9):549-57. PubMed ID: 21815210 [TBL] [Abstract][Full Text] [Related]
5. Selective etching of thin single-walled carbon nanotubes. Kalbác M; Kavan L; Dunsch L J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509 [TBL] [Abstract][Full Text] [Related]
6. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters. Wang HW; Wang BC; Chen WH; Hayashi M J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507 [TBL] [Abstract][Full Text] [Related]
7. Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air. Molina-Duarte J; Espinosa-Vega LI; Rodríguez AG; Guirado-López RA Phys Chem Chem Phys; 2017 Mar; 19(10):7215-7227. PubMed ID: 28233880 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analysis of the effect of reabsorption on the Raman spectroscopy of distinct ( Li S; Wei X; Li L; Cui J; Yang D; Wang Y; Zhou W; Xie S; Hirano A; Tanaka T; Kataura H; Liu H Anal Methods; 2020 May; 12(18):2376-2384. PubMed ID: 32930263 [TBL] [Abstract][Full Text] [Related]
9. Effects of topological defects and diatom vacancies on characteristic vibration modes and Raman intensities of zigzag single-walled carbon nanotubes. Saidi WA J Phys Chem A; 2014 Sep; 118(35):7235-41. PubMed ID: 24279772 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical doping of chirality-resolved carbon nanotubes. Kavan L; Kalbac M; Zukalova M; Dunsch L J Phys Chem B; 2005 Oct; 109(42):19613-9. PubMed ID: 16853536 [TBL] [Abstract][Full Text] [Related]
11. A nonlocal shell model for mode transformation in single-walled carbon nanotubes. Shi MX; Li QM; Huang Y J Phys Condens Matter; 2009 Nov; 21(45):455301. PubMed ID: 21694006 [TBL] [Abstract][Full Text] [Related]
12. Self-built tensile strain in large single-walled carbon nanotubes. Gao P; Zheng L; Zhang Q; Yuan S; You Y; Shen Z; He D ACS Nano; 2010 Feb; 4(2):992-8. PubMed ID: 20078093 [TBL] [Abstract][Full Text] [Related]
13. Sexithiophene encapsulated in a single-walled carbon nanotube: an in situ Raman spectroelectrochemical study of a peapod structure. Kalbáč M; Kavan L; Gorantla S; Gemming T; Dunsch L Chemistry; 2010 Oct; 16(38):11753-9. PubMed ID: 20799304 [TBL] [Abstract][Full Text] [Related]
15. DFT studies on armchair (5, 5) SWCNT functionalization. Modification of selected structural and spectroscopic parameters upon two-atom molecule attachment. Jankowska M; Kupka T; Stobiński L; Kaminský J J Mol Graph Model; 2015 Feb; 55():105-14. PubMed ID: 25437097 [TBL] [Abstract][Full Text] [Related]
16. Substrate-induced Raman frequency variation for single-walled carbon nanotubes. Zhang Y; Zhang J; Son H; Kong J; Liu Z J Am Chem Soc; 2005 Dec; 127(49):17156-7. PubMed ID: 16332042 [TBL] [Abstract][Full Text] [Related]
17. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes. Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824 [TBL] [Abstract][Full Text] [Related]
18. Effect of fullerene encapsulation on radial vibrational breathing-mode frequencies of single-wall carbon nanotubes. Joung SK; Okazaki T; Kishi N; Okada S; Bandow S; Iijima S Phys Rev Lett; 2009 Jul; 103(2):027403. PubMed ID: 19659242 [TBL] [Abstract][Full Text] [Related]
19. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes. Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005 [TBL] [Abstract][Full Text] [Related]
20. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy. Hirschmann TCh; Araujo PT; Muramatsu H; Zhang X; Nielsch K; Kim YA; Dresselhaus MS ACS Nano; 2013 Mar; 7(3):2381-7. PubMed ID: 23311296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]