These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27711498)

  • 1. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions.
    Qiu C; Krüger Y; Wilke M; Marti D; Rička J; Frenz M
    Phys Chem Chem Phys; 2016 Oct; 18(40):28227-28241. PubMed ID: 27711498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metastable phase equilibria in the ice II stability field. A Raman study of synthetic high-density water inclusions in quartz.
    Krüger Y; Mercury L; Canizarès A; Marti D; Simon P
    Phys Chem Chem Phys; 2019 Sep; 21(35):19554-19566. PubMed ID: 31464321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice nucleation triggered by negative pressure.
    Marcolli C
    Sci Rep; 2017 Nov; 7(1):16634. PubMed ID: 29192142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Jan; 28():185-191. PubMed ID: 26384898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.
    Barrow MS; Williams PR; Chan HH; Dore JC; Bellissent-Funel MC
    Phys Chem Chem Phys; 2012 Oct; 14(38):13255-61. PubMed ID: 22918522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring water and other liquids at negative pressure.
    Caupin F; Arvengas A; Davitt K; Azouzi Mel M; Shmulovich KI; Ramboz C; Sessoms DA; Stroock AD
    J Phys Condens Matter; 2012 Jul; 24(28):284110. PubMed ID: 22738888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.
    Mishima O
    J Phys Chem B; 2011 Dec; 115(48):14064-7. PubMed ID: 21736291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation behavior of C2H6 hydrate at temperatures below the ice point: melting to liquid water followed by ice nucleation.
    Ohno H; Oyabu I; Iizuka Y; Hondoh T; Narita H; Nagao J
    J Phys Chem A; 2011 Aug; 115(32):8889-94. PubMed ID: 21744826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous bubble nucleation in water at negative pressure: a Voronoi polyhedra analysis.
    Abascal JL; Gonzalez MA; Aragones JL; Valeriani C
    J Chem Phys; 2013 Feb; 138(8):084508. PubMed ID: 23464161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous Vapor and Ice Nucleation in Water at Negative Pressures: A Classical Density Functional Theory Study.
    Singh Y; Santra M; Singh RS
    J Phys Chem B; 2023 Apr; 127(14):3312-3324. PubMed ID: 36989467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of nuclei growth in ultrasound bubble nucleation.
    de Andrade MO; Haqshenas R; Pahk KJ; Saffari N
    Ultrason Sonochem; 2022 Aug; 88():106091. PubMed ID: 35839705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric studies of freeze-induced dehydration of phospholipids.
    Bronshteyn VL; Steponkus PL
    Biophys J; 1993 Nov; 65(5):1853-65. PubMed ID: 8298015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the line of density anomaly and the lines of melting, crystallization, cavitation, and liquid spinodal in coarse-grained water models.
    Lu J; Chakravarty C; Molinero V
    J Chem Phys; 2016 Jun; 144(23):234507. PubMed ID: 27334179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.