These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 27711516)

  • 41. [Au
    Zhang SS; Senanayake RD; Zhao QQ; Su HF; Aikens CM; Wang XP; Tung CH; Sun D; Zheng LS
    Dalton Trans; 2019 Mar; 48(11):3635-3640. PubMed ID: 30747941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactivity of Cobalt Clusters Co
    Geng L; Cui C; Jia Y; Yin B; Zhang H; Sun ZD; Luo Z
    J Phys Chem A; 2021 Mar; 125(10):2130-2138. PubMed ID: 33689326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superatomic S(2) silver clusters stabilized by a thiolate-phosphine monolayer: insight into electronic and optical properties of Ag14(SC6H3F2)12(PPh3)8 and Ag16(SC6H3F2)14(DPPE)4.
    Gell L; Lehtovaara L; Häkkinen H
    J Phys Chem A; 2014 Sep; 118(37):8351-5. PubMed ID: 24605796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Geometries, stabilities, and electronic properties of Pt-group-doped gold clusters, their relationship to cluster size, and comparison with pure gold clusters.
    Wang SJ; Kuang XY; Lu C; Li YF; Zhao YR
    Phys Chem Chem Phys; 2011 Jun; 13(21):10119-30. PubMed ID: 21519630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tuning the electronic properties of hexanuclear cobalt sulfide superatoms
    Liu G; Pinkard A; Ciborowski SM; Chauhan V; Zhu Z; Aydt AP; Khanna SN; Roy X; Bowen KH
    Chem Sci; 2019 Feb; 10(6):1760-1766. PubMed ID: 30842842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemically modified gold superatoms and superatomic molecules.
    Nishigaki J; Koyasu K; Tsukuda T
    Chem Rec; 2014 Oct; 14(5):897-909. PubMed ID: 25065657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Al(n)Bi clusters: transitions between aromatic and jellium stability.
    Jones CE; Clayborne PA; Reveles JU; Melko JJ; Gupta U; Khanna SN; Castleman AW
    J Phys Chem A; 2008 Dec; 112(51):13316-25. PubMed ID: 19053539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tailoring the stability, photocatalysis and photoluminescence properties of Au
    Qin Z; Zhao D; Zhao L; Xiao Q; Wu T; Zhang J; Wan C; Li G
    Nanoscale Adv; 2019 Jul; 1(7):2529-2536. PubMed ID: 36132741
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Spin Superatom Stabilized by Dual Subshell Filling.
    Bista D; Aydt AP; Anderton KJ; Paley DW; Betley TA; Reber AC; Chauhan V; Bartholomew AK; Roy X; Khanna SN
    J Am Chem Soc; 2022 Mar; 144(11):5172-5179. PubMed ID: 35289175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superatom spin-state dynamics of structurally precise metal monolayer-protected clusters (MPCs).
    Williams LJ; Herbert PJ; Tofanelli MA; Ackerson CJ; Knappenberger KL
    J Chem Phys; 2019 Mar; 150(10):101102. PubMed ID: 30876360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Superatomic Orbitals under Spin-Orbit Coupling.
    Jiang DE; Kühn M; Tang Q; Weigend F
    J Phys Chem Lett; 2014 Oct; 5(19):3286-9. PubMed ID: 26278432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Point Group Symmetry Analysis of the Electronic Structure of Bare and Protected Metal Nanocrystals.
    Kaappa S; Malola S; Häkkinen H
    J Phys Chem A; 2018 Nov; 122(43):8576-8584. PubMed ID: 30351094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ligand accommodation causes the anti-centrosymmetric structure of Au
    Anumula R; Reber AC; An P; Cui C; Guo M; Wu H; Luo Z; Khanna SN
    Nanoscale; 2020 Jul; 12(27):14801-14807. PubMed ID: 32627782
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A unified view of ligand-protected gold clusters as superatom complexes.
    Walter M; Akola J; Lopez-Acevedo O; Jadzinsky PD; Calero G; Ackerson CJ; Whetten RL; Grönbeck H; Häkkinen H
    Proc Natl Acad Sci U S A; 2008 Jul; 105(27):9157-62. PubMed ID: 18599443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the involvement of d-electrons in superatomic shells: the group 3 and 4 transition metals.
    Gilmour JTA; Gaston N
    Phys Chem Chem Phys; 2019 Apr; 21(15):8035-8045. PubMed ID: 30932111
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Passivation on Stability and Electronic Structure of Bulk-like ZnO Clusters.
    Gaikwad PV; Pujari PK; Kshirsagar A
    ACS Omega; 2018 Jul; 3(7):7692-7702. PubMed ID: 31458919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radical attached aluminum nanoclusters: an alternative way of cluster stabilization.
    Sengupta T; Pal S
    Phys Chem Chem Phys; 2016 Aug; 18(31):21746-59. PubMed ID: 27435912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward quantitative electronic structure in small gold nanoclusters.
    Fagan JW; Weerawardene KLDM; Cirri A; Aikens CM; Johnson CJ
    J Chem Phys; 2021 Jul; 155(1):014301. PubMed ID: 34241394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning the electronic structure of gold cluster-assembled materials by altering organophosphine ligands.
    Sikorska C; Vincent E; Schnepf A; Gaston N
    Phys Chem Chem Phys; 2024 Apr; 26(14):10673-10687. PubMed ID: 38511629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms.
    Cakır D; Gülseren O
    J Phys Condens Matter; 2012 Aug; 24(30):305301. PubMed ID: 22763370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.