These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27711528)

  • 1. Energy harvesting and conversion mechanisms for intrinsic upconverted mechano-persistent luminescence in CaZnOS.
    Huang B
    Phys Chem Chem Phys; 2016 Sep; 18(37):25946-25974. PubMed ID: 27711528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.
    Huang B
    Phys Chem Chem Phys; 2016 May; 18(19):13564-82. PubMed ID: 27140724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native Point Defects in CaS: Focus on Intrinsic Defects and Rare Earth Ion Dopant Levels for Up-converted Persistent Luminescence.
    Huang B
    Inorg Chem; 2015 Dec; 54(23):11423-40. PubMed ID: 26593050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Energy Relay Center" for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS.
    Huang B; Peng D; Pan C
    Phys Chem Chem Phys; 2017 Jan; 19(2):1190-1208. PubMed ID: 27942643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels.
    Huang B; Sun M
    Phys Chem Chem Phys; 2017 Apr; 19(14):9457-9469. PubMed ID: 28333170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ZnS/CaZnOS Heterojunction for Efficient Mechanical-to-Optical Energy Conversion by Conduction Band Offset.
    Peng D; Jiang Y; Huang B; Du Y; Zhao J; Zhang X; Ma R; Golovynskyi S; Chen B; Wang F
    Adv Mater; 2020 Apr; 32(16):e1907747. PubMed ID: 32128925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density Functional Calculations of Native Defects in CH3NH3PbI3: Effects of Spin-Orbit Coupling and Self-Interaction Error.
    Du MH
    J Phys Chem Lett; 2015 Apr; 6(8):1461-6. PubMed ID: 26263152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent Luminescence Hole-Type Materials by Design: Transition-Metal-Doped Carbon Allotrope and Carbides.
    Qu B; Zhang B; Wang L; Zhou R; Zeng XC; Li L
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5439-44. PubMed ID: 26849004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid density functional view of native vacancies in gallium nitride.
    Gillen R; Robertson J
    J Phys Condens Matter; 2013 Oct; 25(40):405501. PubMed ID: 24025763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.
    King PW
    Biochim Biophys Acta; 2013; 1827(8-9):949-57. PubMed ID: 23541891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic, structural and electronic properties of metal vacancies in strained AlN/GaN interfaces.
    Kioseoglou J; Pontikis V; Komninou P; Pavloudis T; Chen J; Karakostas T
    J Phys Condens Matter; 2015 Apr; 27(12):125006. PubMed ID: 25693505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation energies and electronic structure of intrinsic vacancy defects and oxygen vacancy clustering in BaZrO3.
    Muhammad Alay-E-Abbas S; Nazir S; Shaukat A
    Phys Chem Chem Phys; 2016 Aug; 18(34):23737-45. PubMed ID: 27514742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The surface states and the electron-hole pair recombination of TiO2 nanopowders].
    Liu BS; He X; Zhao XJ; Zhao QN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):208-12. PubMed ID: 16826888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of intrinsic emission in β-BiNbO4 available for excitation of both UV light and high energy irradiation.
    Yu R; Fan A; Yuan M; Li T; Wang J
    Phys Chem Chem Phys; 2016 Sep; 18(34):23702-8. PubMed ID: 27511288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitive influence of oxygen vacancies for photoactivity on TiO2(110).
    Wang ZT; Deskins NA; Henderson MA; Lyubinetsky I
    Phys Rev Lett; 2012 Dec; 109(26):266103. PubMed ID: 23368587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of quantum dot luminescence excitation within implanted SiO2:Si:C films.
    Zatsepin AF; Buntov EA; Kortov VS; Tetelbaum DI; Mikhaylov AN; Belov AI
    J Phys Condens Matter; 2012 Feb; 24(4):045301. PubMed ID: 22214549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new perspective on the process of intrinsic point defects in α-Al₂O₃.
    Xiang X; Zhang G; Wang X; Tang T; Shi Y
    Phys Chem Chem Phys; 2015 Nov; 17(43):29134-41. PubMed ID: 26464326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.