These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27711625)

  • 1. The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions.
    An Y; Zhang M; Wu D; Wang T; Jiao Z; Xia C; Fu Z; Wang K
    Phys Chem Chem Phys; 2016 Oct; 18(40):27976-27980. PubMed ID: 27711625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.
    Wakai T; Sakamoto S; Tomiya M
    J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron.
    Huang H; Gao G; Fu H; Zheng A; Zou F; Ding G; Yao K
    Sci Rep; 2017 Jun; 7(1):3955. PubMed ID: 28638083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rectification inversion in oxygen substituted graphyne-graphene-based heterojunctions.
    Zhao WK; Cui B; Fang CF; Ji GM; Zhao JF; Kong XR; Zou DQ; Jiang XH; Li DM; Liu DS
    Phys Chem Chem Phys; 2015 Feb; 17(5):3115-22. PubMed ID: 25516239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-structured interface of graphene and h-BN for sensing applications.
    de Souza FA; Amorim RG; Scopel WL; Scheicher RH
    Nanotechnology; 2016 Sep; 27(36):365503. PubMed ID: 27485857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin filtering and magneto-resistive effect at the graphene/h-BN ribbon interface.
    Dubois SM; Declerck X; Charlier JC; Payne MC
    ACS Nano; 2013 May; 7(5):4578-85. PubMed ID: 23641732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-filtering, giant magnetoresistance, rectifying and negative differential resistance effects in planar four-coordinate Fe complex with graphene nanoribbon electrodes.
    Zhao P; Wu QH; Liu DS; Chen G
    J Chem Phys; 2014 Jan; 140(4):044311. PubMed ID: 25669527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices.
    Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH
    Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rectifying Performance of Heterojunction Based on α-Borophene Nanoribbons with Edge Passivation.
    Yu G; Ding W; Xiao X; Li X; Zhou G
    Nanoscale Res Lett; 2020 Sep; 15(1):185. PubMed ID: 32970277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning electronic properties of boron phosphide nanoribbons by edge passivation and deformation.
    Dai X; Zhang L; Jiang Y; Li H
    Phys Chem Chem Phys; 2019 Jul; 21(28):15392-15399. PubMed ID: 31276127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin transport properties in lower n-acene-graphene nanojunctions.
    Zou D; Cui B; Kong X; Zhao W; Zhao J; Liu D
    Phys Chem Chem Phys; 2015 May; 17(17):11292-300. PubMed ID: 25835485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions.
    Bronner C; Durr RA; Rizzo DJ; Lee YL; Marangoni T; Kalayjian AM; Rodriguez H; Zhao W; Louie SG; Fischer FR; Crommie MF
    ACS Nano; 2018 Mar; 12(3):2193-2200. PubMed ID: 29381853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene.
    Gao G; Li Z; Chen M; Xie Y; Wang Y
    J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons.
    Kumar J; Nemade HB; Giri PK
    Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative differential resistance in oxidized zigzag graphene nanoribbons.
    Wang M; Li CM
    Phys Chem Chem Phys; 2011 Jan; 13(4):1413-8. PubMed ID: 21152514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices.
    Wan H; Xiao X; Ang YS
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-induced tunable negative differential resistance in triangle graphene spirals.
    Tan J; Zhang X; Liu W; He X; Zhao M
    Nanotechnology; 2018 May; 29(20):205202. PubMed ID: 29473828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.