These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27711625)

  • 21. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR; Cheng SG
    J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Negative differential resistance devices by using N-doped graphene nanoribbons.
    Huang J; Wang W; Li Q; Yang J
    J Chem Phys; 2014 Apr; 140(16):164703. PubMed ID: 24784295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative differential resistance effect in planar graphene nanoribbon break junctions.
    Nguyen PD; Nguyen TC; Hossain FM; Huynh DH; Evans R; Skafidas E
    Nanoscale; 2015 Jan; 7(1):289-93. PubMed ID: 25406934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.
    Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP
    Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfect spin Seebeck effect, spin-valve, spin-filter and spin-rectification based on the heterojunction of sawtooth graphene and graphyne nanoribbons.
    Ni Y; Hua H; Li J; Hu N
    Nanoscale; 2022 Mar; 14(10):3818-3825. PubMed ID: 35191456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The integrated spintronic functionalities of an individual high-spin state spin-crossover molecule between graphene nanoribbon electrodes.
    Zhu L; Zou F; Gao JH; Fu YS; Gao GY; Fu HH; Wu MH; Lü JT; Yao KL
    Nanotechnology; 2015 Aug; 26(31):315201. PubMed ID: 26180074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybridization effects on the out-of-plane electron tunneling properties of monolayers: is h-BN more conductive than graphene?
    Zhong X; Amorim RG; Rocha AR; Pandey R
    Nanotechnology; 2014 Aug; 25(34):345703. PubMed ID: 25101928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of length on the position of negative differential resistance and realization of multifunction in fused oligothiophenes based molecular device.
    Fan J; Gathitu NN; Chang Y; Zhang J
    J Chem Phys; 2013 Feb; 138(7):074307. PubMed ID: 23445009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal spin filtering, thermal spin switching and negative-differential-resistance in thermal spin currents in zigzag SiC nanoribbons.
    Wu DD; Fu HH; Gu L; Ni Y; Zu FX; Yao KL
    Phys Chem Chem Phys; 2014 Sep; 16(33):17493-8. PubMed ID: 25019693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis.
    Bhattacharya B; Mondal R; Sarkar U
    J Mol Model; 2018 Sep; 24(10):278. PubMed ID: 30209667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Edge morphology induced rectifier diode effect in C
    He JJ; Guo YD; Yan XH; Zeng HL
    Phys Chem Chem Phys; 2018 Nov; 20(45):28759-28766. PubMed ID: 30417191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor.
    Nguyen GD; Tsai HZ; Omrani AA; Marangoni T; Wu M; Rizzo DJ; Rodgers GF; Cloke RR; Durr RA; Sakai Y; Liou F; Aikawa AS; Chelikowsky JR; Louie SG; Fischer FR; Crommie MF
    Nat Nanotechnol; 2017 Nov; 12(11):1077-1082. PubMed ID: 28945240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN.
    Sanaeepur M; Yazdanpanah Goharrizi A; Sharifi MJ
    Beilstein J Nanotechnol; 2014; 5():1569-74. PubMed ID: 25247138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Position effects of single vacancy on transport properties of single layer armchair h-BNC heterostructure.
    Qiu M; Liew KM
    Phys Chem Chem Phys; 2012 Aug; 14(32):11478-83. PubMed ID: 22805975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of different covalent bond connections and doping on transport properties of planar graphene/MoS
    Li W; Wei J; Bian B; Liao B; Wang G
    Phys Chem Chem Phys; 2021 Mar; 23(11):6871-6879. PubMed ID: 33725032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The computational design of junctions between carbon nanotubes and graphene nanoribbons.
    Li YF; Li BR; Zhang HL
    Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetrically-gated graphene self-switching diodes as negative differential resistance devices.
    Al-Dirini F; Hossain FM; Nirmalathas A; Skafidas E
    Nanoscale; 2014 Jul; 6(13):7628-34. PubMed ID: 24898112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.