These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27711632)

  • 21. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.
    Huie MM; DiLeo RA; Marschilok AC; Takeuchi KJ; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11724-31. PubMed ID: 25710110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First-Principle Insights Into Molecular Design for High-Voltage Organic Electrode Materials for Mg Based Batteries.
    Lüder J; Manzhos S
    Front Chem; 2020; 8():83. PubMed ID: 32154214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte.
    Su S; Huang Z; NuLi Y; Tuerxun F; Yang J; Wang J
    Chem Commun (Camb); 2015 Feb; 51(13):2641-4. PubMed ID: 25571942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries.
    Santner HJ; Korepp C; Winter M; Besenhard JO; Möller KC
    Anal Bioanal Chem; 2004 May; 379(2):266-71. PubMed ID: 14968287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte.
    Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D
    J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications.
    Sevov CS; Hickey DP; Cook ME; Robinson SG; Barnett S; Minteer SD; Sigman MS; Sanford MS
    J Am Chem Soc; 2017 Mar; 139(8):2924-2927. PubMed ID: 28219237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymer-Based Organic Batteries.
    Muench S; Wild A; Friebe C; Häupler B; Janoschka T; Schubert US
    Chem Rev; 2016 Aug; 116(16):9438-84. PubMed ID: 27479607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.
    Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening.
    Cheng L; Assary RS; Qu X; Jain A; Ong SP; Rajput NN; Persson K; Curtiss LA
    J Phys Chem Lett; 2015 Jan; 6(2):283-91. PubMed ID: 26263464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biologically inspired pteridine redox centres for rechargeable batteries.
    Hong J; Lee M; Lee B; Seo DH; Park CB; Kang K
    Nat Commun; 2014 Oct; 5():5335. PubMed ID: 25359101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomaterials for rechargeable lithium batteries.
    Bruce PG; Scrosati B; Tarascon JM
    Angew Chem Int Ed Engl; 2008; 47(16):2930-46. PubMed ID: 18338357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.
    Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J
    J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries.
    Shin JY; Yamada T; Yoshikawa H; Awaga K; Shinokubo H
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3096-101. PubMed ID: 24554515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.
    Lin F; Liu Y; Yu X; Cheng L; Singer A; Shpyrko OG; Xin HL; Tamura N; Tian C; Weng TC; Yang XQ; Meng YS; Nordlund D; Yang W; Doeff MM
    Chem Rev; 2017 Nov; 117(21):13123-13186. PubMed ID: 28960962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes.
    Chen HM; Maohua C; Adams S
    Phys Chem Chem Phys; 2015 Jul; 17(25):16494-506. PubMed ID: 26051899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.