These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 27711670)
1. Direct simulation of electron transfer in the cobalt hexammine(ii/iii) self-exchange reaction. Kenion RL; Ananth N Phys Chem Chem Phys; 2016 Sep; 18(37):26117-26124. PubMed ID: 27711670 [TBL] [Abstract][Full Text] [Related]
2. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Rosokha SV; Kochi JK Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446 [TBL] [Abstract][Full Text] [Related]
3. Electron and hydrogen-atom self-exchange reactions of iron and cobalt coordination complexes. Yoder JC; Roth JP; Gussenhoven EM; Larsen AS; Mayer JM J Am Chem Soc; 2003 Mar; 125(9):2629-40. PubMed ID: 12603151 [TBL] [Abstract][Full Text] [Related]
4. Direct simulation of proton-coupled electron transfer across multiple regimes. Kretchmer JS; Miller TF J Chem Phys; 2013 Apr; 138(13):134109. PubMed ID: 23574210 [TBL] [Abstract][Full Text] [Related]
5. All-Atom MD Simulation of DNA Condensation Using Ab Initio Derived Force Field Parameters of Cobalt(III)-Hexammine. Sun T; Mirzoev A; Korolev N; Lyubartsev AP; Nordenskiöld L J Phys Chem B; 2017 Aug; 121(33):7761-7770. PubMed ID: 28746805 [TBL] [Abstract][Full Text] [Related]
6. Adiabatic and non-adiabatic concerted proton-electron transfers. Temperature effects in the oxidation of intramolecularly hydrogen-bonded phenols. Costentin C; Robert M; Savéant JM J Am Chem Soc; 2007 Aug; 129(32):9953-63. PubMed ID: 17637055 [TBL] [Abstract][Full Text] [Related]
7. A molecularly based theory for electron transfer reorganization energy. Zhuang B; Wang ZG J Chem Phys; 2015 Dec; 143(22):224502. PubMed ID: 26671385 [TBL] [Abstract][Full Text] [Related]
8. Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates. Duke JR; Ananth N Faraday Discuss; 2016 Dec; 195():253-268. PubMed ID: 27739549 [TBL] [Abstract][Full Text] [Related]
9. Temperature- and pressure-dependence of the outer-sphere reorganization free energy for electron transfer reactions: a continuum approach. Manjari SR; Kim HJ J Phys Chem B; 2006 Jan; 110(1):494-500. PubMed ID: 16471560 [TBL] [Abstract][Full Text] [Related]
10. Solvent reorganization in electron and ion transfer reactions near a smooth electrified surface: a molecular dynamics study. Hartnig C; Koper MT J Am Chem Soc; 2003 Aug; 125(32):9840-5. PubMed ID: 12904051 [TBL] [Abstract][Full Text] [Related]
11. Tuning excited-state electron transfer from an adiabatic to nonadiabatic type in donor-bridge-acceptor systems and the associated energy-transfer process. Chen KY; Hsieh CC; Cheng YM; Lai CH; Chou PT; Chow TJ J Phys Chem A; 2006 Nov; 110(44):12136-44. PubMed ID: 17078608 [TBL] [Abstract][Full Text] [Related]
12. Slow hydrogen atom self-exchange between Os(IV) anilide and Os(III) aniline complexes: relationships with electron and proton transfer self-exchange. Soper JD; Mayer JM J Am Chem Soc; 2003 Oct; 125(40):12217-29. PubMed ID: 14519007 [TBL] [Abstract][Full Text] [Related]
13. Electron transfer in uranyl(VI)-uranyl(V) complexes in solution. Privalov T; Macak P; Schimmelpfennig B; Fromager E; Grenthe I; Wahlgren U J Am Chem Soc; 2004 Aug; 126(31):9801-8. PubMed ID: 15291584 [TBL] [Abstract][Full Text] [Related]
14. Molecular and Electronic Structures of Homoleptic Six-Coordinate Cobalt(I) Complexes of 2,2':6',2″-Terpyridine, 2,2'-Bipyridine, and 1,10-Phenanthroline. An Experimental and Computational Study. England J; Bill E; Weyhermüller T; Neese F; Atanasov M; Wieghardt K Inorg Chem; 2015 Dec; 54(24):12002-18. PubMed ID: 26636830 [TBL] [Abstract][Full Text] [Related]
15. Collective Reaction Coordinate for Hybrid Quantum and Molecular Mechanics Simulations: A Case Study of the Hydride Transfer in Dihydrofolate Reductase. Doron D; Kohen A; Major DT J Chem Theory Comput; 2012 Jul; 8(7):2484-96. PubMed ID: 26588977 [TBL] [Abstract][Full Text] [Related]
16. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids. Nagaraj K; Senthil Murugan K; Thangamuniyandi P; Sakthinathan S Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 143():101-6. PubMed ID: 25721780 [TBL] [Abstract][Full Text] [Related]
17. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes. Postnikova GB; Shekhovtsova EA Biochemistry (Mosc); 2016 Dec; 81(13):1735-1753. PubMed ID: 28260494 [TBL] [Abstract][Full Text] [Related]
18. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms. Skone JH; Soudackov AV; Hammes-Schiffer S J Am Chem Soc; 2006 Dec; 128(51):16655-63. PubMed ID: 17177415 [TBL] [Abstract][Full Text] [Related]
19. Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein. Blumberger J; Klein ML J Am Chem Soc; 2006 Oct; 128(42):13854-67. PubMed ID: 17044714 [TBL] [Abstract][Full Text] [Related]
20. Electron localization and the transition from adiabatic to nonadiabatic charge transport in organic conductors. Stafström S Chem Soc Rev; 2010 Jul; 39(7):2484-99. PubMed ID: 20520911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]