These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27711688)

  • 1. The influences of operating conditions and design configurations on the performance of symmetric electrochemical capacitors.
    Ike IS; Sigalas I; Iyuke SE
    Phys Chem Chem Phys; 2016 Oct; 18(41):28626-28647. PubMed ID: 27711688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review.
    Ike IS; Sigalas I; Iyuke S
    Phys Chem Chem Phys; 2016 Jan; 18(2):661-80. PubMed ID: 26659405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-discharge of electrochemical capacitors based on soluble or grafted quinone.
    Shul G; Bélanger D
    Phys Chem Chem Phys; 2016 Jul; 18(28):19137-45. PubMed ID: 27356866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.
    Chun SE; Evanko B; Wang X; Vonlanthen D; Ji X; Stucky GD; Boettcher SW
    Nat Commun; 2015 Aug; 6():7818. PubMed ID: 26239891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.
    Wang X; Chandrabose RS; Chun SE; Zhang T; Evanko B; Jian Z; Boettcher SW; Stucky GD; Ji X
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19978-85. PubMed ID: 26310453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes.
    Yang N; Yu S; Zhang W; Cheng HM; Simon P; Jiang X
    Adv Mater; 2022 Aug; 34(34):e2202380. PubMed ID: 35413141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.
    Wu ZS; Ren W; Wang DW; Li F; Liu B; Cheng HM
    ACS Nano; 2010 Oct; 4(10):5835-42. PubMed ID: 20857919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Operating Mechanism of Aqueous Pentyl Viologen/Bromide Redox-Enhanced Electrochemical Capacitors with Ordered Mesoporous Carbon Electrodes.
    Calcagno G; Evanko B; Stucky GD; Ahlberg E; Yoo SJ; Palmqvist AEC
    ACS Appl Mater Interfaces; 2022 May; 14(18):20349-20357. PubMed ID: 34590838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors.
    Abbas Q; Fitzek H; Schröttner H; Dsoke S; Gollas B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Capacitance Pseudocapacitors from Li
    Banda H; Dou JH; Chen T; Libretto NJ; Chaudhary M; Bernard GM; Miller JT; Michaelis VK; Dincă M
    J Am Chem Soc; 2021 Feb; 143(5):2285-2292. PubMed ID: 33525869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions.
    Pang MC; Hao Y; Marinescu M; Wang H; Chen M; Offer GJ
    Phys Chem Chem Phys; 2019 Oct; 21(41):22740-22755. PubMed ID: 31552951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric characterization of optimal electrode designs for improved droplet charging and actuation.
    Ahn MM; Im DJ; Kang IS
    Analyst; 2013 Nov; 138(24):7362-8. PubMed ID: 24162328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power.
    Wang X; Mehandzhiyski AY; Arstad B; Van Aken KL; Mathis TS; Gallegos A; Tian Z; Ren D; Sheridan E; Grimes BA; Jiang DE; Wu J; Gogotsi Y; Chen D
    J Am Chem Soc; 2017 Dec; 139(51):18681-18687. PubMed ID: 29185334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode.
    Kim M; Oh I; Kim J
    Phys Chem Chem Phys; 2015 Jul; 17(25):16367-74. PubMed ID: 26051533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.