BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27711825)

  • 1. "CLICKable" azide-functionalized phosphonates for the surface-modification of molecular and solid-state metal oxides.
    Schönweiz S; Knoll S; Anjass M; Braumüller M; Rau S; Streb C
    Dalton Trans; 2016 Oct; 45(41):16121-16124. PubMed ID: 27711825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial Steps of the Acid-Catalyzed Polyoxometalate-Functionalization with Phosphonic Acid Esters.
    Knoll S; Streb C
    Inorg Chem; 2023 Jan; 62(3):1218-1225. PubMed ID: 36630536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled, low-coverage metal oxide activation of silicon for organic functionalization: unraveling the phosphonate bond.
    Thissen P; Vega A; Peixoto T; Chabal YJ
    Langmuir; 2012 Dec; 28(50):17494-505. PubMed ID: 23163566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable Molecular Surface Modification of Nanostructured, Mesoporous Metal Oxide Photoanodes by Silane and Click Chemistry.
    Wu L; Eberhart M; Shan B; Nayak A; Brennaman MK; Miller AJM; Shao J; Meyer TJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4560-4567. PubMed ID: 30608131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A citric acid-derived ligand for modular functionalization of metal oxide surfaces via "click" chemistry.
    Bishop LM; Yeager JC; Chen X; Wheeler JN; Torelli MD; Benson MC; Burke SD; Pedersen JA; Hamers RJ
    Langmuir; 2012 Jan; 28(2):1322-9. PubMed ID: 22145802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells.
    Brennan BJ; Llansola Portolés MJ; Liddell PA; Moore TA; Moore AL; Gust D
    Phys Chem Chem Phys; 2013 Oct; 15(39):16605-14. PubMed ID: 23959453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recyclable functionalization of silica with alcohols via dehydrogenative addition on hydrogen silsesquioxane.
    Moitra N; Kamei T; Kanamori K; Nakanishi K; Takeda K; Shimada T
    Langmuir; 2013 Oct; 29(39):12243-53. PubMed ID: 23977900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal phosphonates applied to biotechnologies: a novel approach to oligonucleotide microarrays.
    Bujoli B; Lane SM; Nonglaton G; Pipelier M; Léger J; Talham DR; Tellier C
    Chemistry; 2005 Mar; 11(7):1980-8. PubMed ID: 15669062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of oxide surfaces by terpyridine phosphonate ligands: surface reactions and anchoring geometry.
    Spampinato V; Tuccitto N; Quici S; Calabrese V; Marletta G; Torrisi A; Licciardello A
    Langmuir; 2010 Jun; 26(11):8400-6. PubMed ID: 20349973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized Self-Assembled Monolayers Bearing Diiminate Complexes Immobilized through Covalently Anchored Ligands.
    Rozen E; Erlich Y; Reesbeck ME; Holland PL; Sukenik CN
    Langmuir; 2018 Nov; 34(45):13472-13480. PubMed ID: 29048903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled reactivity tuning of metal-functionalized vanadium oxide clusters.
    Kastner K; Forster J; Ida H; Newton GN; Oshio H; Streb C
    Chemistry; 2015 May; 21(21):7686-9. PubMed ID: 25850969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.
    Kuang Q; Wang X; Jiang Z; Xie Z; Zheng L
    Acc Chem Res; 2014 Feb; 47(2):308-18. PubMed ID: 24341353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction.
    Xu YJ; Fu X
    Langmuir; 2009 Sep; 25(17):9840-6. PubMed ID: 19499936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent Photosensitizer-Polyoxometalate-Catalyst Dyads for Visible-Light-Driven Hydrogen Evolution.
    Schönweiz S; Rommel SA; Kübel J; Micheel M; Dietzek B; Rau S; Streb C
    Chemistry; 2016 Aug; 22(34):12002-5. PubMed ID: 27418410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the radiolytic stability of metal(iv) phosphonate hybrid adsorbent materials.
    Luca V; Veliscek-Carolan J
    Phys Chem Chem Phys; 2020 Aug; 22(30):17027-17032. PubMed ID: 32691030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient conversion of arylene precursors into photoluminescent phosphonates for surface modification of metal oxides.
    Keceli E; Hemgesberg M; Bay S; Wilhelm C; Sun Y; Ernst S; Müller TJ; Thiel WR
    Dalton Trans; 2013 May; 42(18):6344-52. PubMed ID: 23340827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generic magnetic microsphere platform with "clickable" ligands for purification and immobilization of targeted proteins.
    Zheng J; Li Y; Sun Y; Yang Y; Ding Y; Lin Y; Yang W
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7241-50. PubMed ID: 25785495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of different amino-functionalization procedures on a selection of metal oxide microparticles: degree of modification and hydrolytic stability.
    Sakeye M; Smått JH
    Langmuir; 2012 Dec; 28(49):16941-50. PubMed ID: 23153336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions.
    Jal PK; Patel S; Mishra BK
    Talanta; 2004 Apr; 62(5):1005-28. PubMed ID: 18969392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.
    Ma TY; Yuan ZY
    ChemSusChem; 2011 Oct; 4(10):1407-19. PubMed ID: 21598407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.