These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27711896)

  • 1. Electrochemistry at single molecule occupancy in nanopore-confined recessed ring-disk electrode arrays.
    Fu K; Han D; Ma C; Bohn PW
    Faraday Discuss; 2016 Dec; 193():51-64. PubMed ID: 27711896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity.
    Ma C; Contento NM; Gibson LR; Bohn PW
    ACS Nano; 2013 Jun; 7(6):5483-90. PubMed ID: 23691968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox cycling on recessed ring-disk nanoelectrode arrays in the absence of supporting electrolyte.
    Ma C; Contento NM; Bohn PW
    J Am Chem Soc; 2014 May; 136(20):7225-8. PubMed ID: 24805994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recessed ring-disk nanoelectrode arrays integrated in nanofluidic structures for selective electrochemical detection.
    Ma C; Contento NM; Gibson LR; Bohn PW
    Anal Chem; 2013 Oct; 85(20):9882-8. PubMed ID: 24074127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Nafion-Coated Nanopore Electrode Arrays as Redox-Cycling-Based Electrochemical Diodes.
    Fu K; Han D; Kwon SR; Bohn PW
    ACS Nano; 2018 Sep; 12(9):9177-9185. PubMed ID: 30080388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries.
    Fu K; Kwon SR; Han D; Bohn PW
    Acc Chem Res; 2020 Apr; 53(4):719-728. PubMed ID: 31990518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox Cycling in Individually Encapsulated Attoliter-Volume Nanopores.
    Kwon SR; Fu K; Han D; Bohn PW
    ACS Nano; 2018 Dec; 12(12):12923-12931. PubMed ID: 30525454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.
    Chen Q; Luo L; White HS
    Langmuir; 2015 Apr; 31(15):4573-81. PubMed ID: 25811080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides.
    Han D; Crouch GM; Fu K; Zaino Iii LP; Bohn PW
    Chem Sci; 2017 Aug; 8(8):5345-5355. PubMed ID: 28970913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion selective redox cycling in zero-dimensional nanopore electrode arrays at low ionic strength.
    Fu K; Han D; Ma C; Bohn PW
    Nanoscale; 2017 Apr; 9(16):5164-5171. PubMed ID: 28393950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-Gated Nanoparticle Transport and Collisions in Attoliter-Volume Nanopore Electrode Arrays.
    Fu K; Han D; Crouch GM; Kwon SR; Bohn PW
    Small; 2018 May; 14(18):e1703248. PubMed ID: 29377558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nanopore array electrodes by focused ion beam milling.
    Lanyon YH; De Marzi G; Watson YE; Quinn AJ; Gleeson JP; Redmond G; Arrigan DW
    Anal Chem; 2007 Apr; 79(8):3048-55. PubMed ID: 17370998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes.
    Ma C; Zaino Iii LP; Bohn PW
    Chem Sci; 2015 May; 6(5):3173-3179. PubMed ID: 28706689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nanopore electrode.
    Zhang B; Zhang Y; White HS
    Anal Chem; 2004 Nov; 76(21):6229-38. PubMed ID: 15516113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state voltammetric response of the nanopore electrode.
    Zhang B; Zhang Y; White HS
    Anal Chem; 2006 Jan; 78(2):477-83. PubMed ID: 16408930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion Accumulation and Migration Effects on Redox Cycling in Nanopore Electrode Arrays at Low Ionic Strength.
    Ma C; Xu W; Wichert WR; Bohn PW
    ACS Nano; 2016 Mar; 10(3):3658-64. PubMed ID: 26910572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrowetting-Mediated Transport to Produce Electrochemical Transistor Action in Nanopore Electrode Arrays.
    Kwon SR; Baek S; Fu K; Bohn PW
    Small; 2020 May; 16(18):e1907249. PubMed ID: 32270930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication, Characterization, and Analytical Application of Silica Nanopore Array-Modified Platinum Electrode.
    Zhou P; Yao L; Su B
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4143-4149. PubMed ID: 31886640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the Electrochemical Response of Nanostructured Electrode Arrays.
    Atighilorestani M; Brolo AG
    Anal Chem; 2017 Jun; 89(11):6129-6135. PubMed ID: 28452223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.