BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27711971)

  • 1. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).
    Raddatz S; Guy-Haim T; Rilov G; Wahl M
    J Phycol; 2017 Feb; 53(1):44-58. PubMed ID: 27711971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on seaweed-sustaining top-down control vary with season.
    Werner FJ; Graiff A; Matthiessen B
    Oecologia; 2016 Mar; 180(3):889-901. PubMed ID: 26566809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buffering and Amplifying Interactions among OAW (Ocean Acidification & Warming) and Nutrient Enrichment on Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) and Their Carry Over Effects to Hypoxia Impact.
    Al-Janabi B; Kruse I; Graiff A; Winde V; Lenz M; Wahl M
    PLoS One; 2016; 11(4):e0152948. PubMed ID: 27043710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming, but Not Acidification, Restructures Epibacterial Communities of the Baltic Macroalga
    Mensch B; Neulinger SC; Künzel S; Wahl M; Schmitz RA
    Front Microbiol; 2020; 11():1471. PubMed ID: 32676070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidative Properties of Baltic Sea Keystone Macroalgae (
    Graiff A; Karsten U
    Biology (Basel); 2021 Dec; 10(12):. PubMed ID: 34943245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.
    Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F
    Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocean acidification decreases grazing pressure but alters morphological structure in a dominant coastal seaweed.
    Kinnby A; White JCB; Toth GB; Pavia H
    PLoS One; 2021; 16(1):e0245017. PubMed ID: 33508019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal fluctuations in chemical defenses against macrofouling in Fucus vesiculosus and Fucus serratus from the Baltic Sea.
    Rickert E; Karsten U; Pohnert G; Wahl M
    Biofouling; 2015; 31(4):363-77. PubMed ID: 26023861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal variation in the antifouling defence of the temperate brown alga Fucus vesiculosus.
    Saha M; Wahl M
    Biofouling; 2013; 29(6):661-8. PubMed ID: 23755914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-occurrence of native and invasive macroalgae might be facilitated under global warming.
    Bommarito C; Noè S; Díaz-Morales DM; Lukić I; Hiebenthal C; Rilov G; Guy-Haim T; Wahl M
    Sci Total Environ; 2024 Feb; 912():169087. PubMed ID: 38056641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem.
    Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I
    Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2.
    Saderne V; Wahl M
    PLoS One; 2013; 8(7):e70455. PubMed ID: 23894659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.
    Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA
    Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomics and Microbiomics Insights into Differential Surface Fouling of Three Macroalgal Species of
    Oppong-Danquah E; Blümel M; Tasdemir D
    Mar Drugs; 2023 Nov; 21(11):. PubMed ID: 37999420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oceans are changing: impact of ocean warming and acidification on biofouling communities.
    Dobretsov S; Coutinho R; Rittschof D; Salta M; Ragazzola F; Hellio C
    Biofouling; 2019 May; 35(5):585-595. PubMed ID: 31282218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal Variations in Surface Metabolite Composition of Fucus vesiculosus and Fucus serratus from the Baltic Sea.
    Rickert E; Wahl M; Link H; Richter H; Pohnert G
    PLoS One; 2016; 11(12):e0168196. PubMed ID: 27959901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nodularin induces oxidative stress in the Baltic Sea brown alga Fucus vesiculosus (Phaeophyceae).
    Pflugmacher S; Olin M; Kankaanpää H
    Mar Environ Res; 2007 Aug; 64(2):149-59. PubMed ID: 17287018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivities to global change drivers may correlate positively or negatively in a foundational marine macroalga.
    Al-Janabi B; Wahl M; Karsten U; Graiff A; Kruse I
    Sci Rep; 2019 Oct; 9(1):14653. PubMed ID: 31601889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga.
    Johansson D; Pereyra RT; Rafajlović M; Johannesson K
    BMC Ecol; 2017 Apr; 17(1):14. PubMed ID: 28381278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical robustness of the calcareous tubeworm Hydroides elegans: warming mitigates the adverse effects of ocean acidification.
    Li C; Meng Y; He C; Chan VB; Yao H; Thiyagarajan V
    Biofouling; 2016; 32(2):191-204. PubMed ID: 26820060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.