These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27711971)

  • 1. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).
    Raddatz S; Guy-Haim T; Rilov G; Wahl M
    J Phycol; 2017 Feb; 53(1):44-58. PubMed ID: 27711971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on seaweed-sustaining top-down control vary with season.
    Werner FJ; Graiff A; Matthiessen B
    Oecologia; 2016 Mar; 180(3):889-901. PubMed ID: 26566809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buffering and Amplifying Interactions among OAW (Ocean Acidification & Warming) and Nutrient Enrichment on Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) and Their Carry Over Effects to Hypoxia Impact.
    Al-Janabi B; Kruse I; Graiff A; Winde V; Lenz M; Wahl M
    PLoS One; 2016; 11(4):e0152948. PubMed ID: 27043710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming, but Not Acidification, Restructures Epibacterial Communities of the Baltic Macroalga
    Mensch B; Neulinger SC; Künzel S; Wahl M; Schmitz RA
    Front Microbiol; 2020; 11():1471. PubMed ID: 32676070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidative Properties of Baltic Sea Keystone Macroalgae (
    Graiff A; Karsten U
    Biology (Basel); 2021 Dec; 10(12):. PubMed ID: 34943245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.
    Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F
    Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocean acidification decreases grazing pressure but alters morphological structure in a dominant coastal seaweed.
    Kinnby A; White JCB; Toth GB; Pavia H
    PLoS One; 2021; 16(1):e0245017. PubMed ID: 33508019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal fluctuations in chemical defenses against macrofouling in Fucus vesiculosus and Fucus serratus from the Baltic Sea.
    Rickert E; Karsten U; Pohnert G; Wahl M
    Biofouling; 2015; 31(4):363-77. PubMed ID: 26023861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal variation in the antifouling defence of the temperate brown alga Fucus vesiculosus.
    Saha M; Wahl M
    Biofouling; 2013; 29(6):661-8. PubMed ID: 23755914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-occurrence of native and invasive macroalgae might be facilitated under global warming.
    Bommarito C; Noè S; Díaz-Morales DM; Lukić I; Hiebenthal C; Rilov G; Guy-Haim T; Wahl M
    Sci Total Environ; 2024 Feb; 912():169087. PubMed ID: 38056641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem.
    Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I
    Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2.
    Saderne V; Wahl M
    PLoS One; 2013; 8(7):e70455. PubMed ID: 23894659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.
    Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA
    Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomics and Microbiomics Insights into Differential Surface Fouling of Three Macroalgal Species of
    Oppong-Danquah E; Blümel M; Tasdemir D
    Mar Drugs; 2023 Nov; 21(11):. PubMed ID: 37999420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oceans are changing: impact of ocean warming and acidification on biofouling communities.
    Dobretsov S; Coutinho R; Rittschof D; Salta M; Ragazzola F; Hellio C
    Biofouling; 2019 May; 35(5):585-595. PubMed ID: 31282218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal Variations in Surface Metabolite Composition of Fucus vesiculosus and Fucus serratus from the Baltic Sea.
    Rickert E; Wahl M; Link H; Richter H; Pohnert G
    PLoS One; 2016; 11(12):e0168196. PubMed ID: 27959901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nodularin induces oxidative stress in the Baltic Sea brown alga Fucus vesiculosus (Phaeophyceae).
    Pflugmacher S; Olin M; Kankaanpää H
    Mar Environ Res; 2007 Aug; 64(2):149-59. PubMed ID: 17287018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivities to global change drivers may correlate positively or negatively in a foundational marine macroalga.
    Al-Janabi B; Wahl M; Karsten U; Graiff A; Kruse I
    Sci Rep; 2019 Oct; 9(1):14653. PubMed ID: 31601889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga.
    Johansson D; Pereyra RT; Rafajlović M; Johannesson K
    BMC Ecol; 2017 Apr; 17(1):14. PubMed ID: 28381278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical robustness of the calcareous tubeworm Hydroides elegans: warming mitigates the adverse effects of ocean acidification.
    Li C; Meng Y; He C; Chan VB; Yao H; Thiyagarajan V
    Biofouling; 2016; 32(2):191-204. PubMed ID: 26820060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.