These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 27711977)
1. Evaluation of the Penetration of Multiple Classes of Pesticides in Fresh Produce Using Surface-Enhanced Raman Scattering Mapping. Yang T; Zhao B; Hou R; Zhang Z; Kinchla AJ; Clark JM; He L J Food Sci; 2016 Nov; 81(11):T2891-T2901. PubMed ID: 27711977 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping. Yang T; Zhao B; Kinchla AJ; Clark JM; He L J Agric Food Chem; 2017 May; 65(17):3541-3550. PubMed ID: 28393527 [TBL] [Abstract][Full Text] [Related]
3. Real-Time and in Situ Monitoring of Pesticide Penetration in Edible Leaves by Surface-Enhanced Raman Scattering Mapping. Yang T; Zhang Z; Zhao B; Hou R; Kinchla A; Clark JM; He L Anal Chem; 2016 May; 88(10):5243-50. PubMed ID: 27099952 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. Yang T; Doherty J; Zhao B; Kinchla AJ; Clark JM; He L J Agric Food Chem; 2017 Nov; 65(44):9744-9752. PubMed ID: 29067814 [TBL] [Abstract][Full Text] [Related]
5. Alteration of the Nonsystemic Behavior of the Pesticide Ferbam on Tea Leaves by Engineered Gold Nanoparticles. Hou R; Zhang Z; Pang S; Yang T; Clark JM; He L Environ Sci Technol; 2016 Jun; 50(12):6216-23. PubMed ID: 27254832 [TBL] [Abstract][Full Text] [Related]
6. Real-time and in situ monitoring of organosilicon-induced thiram penetration into cabbage leaves by surface-enhanced Raman scattering mapping. Pan TT; Guo M; Lu P; Hu D J Sci Food Agric; 2022 Dec; 102(15):7405-7413. PubMed ID: 35789490 [TBL] [Abstract][Full Text] [Related]
7. Understanding the impact of a non-ionic surfactant alkylphenol ethoxylate on surface-enhanced Raman spectroscopic analysis of pesticides on apple surfaces. Du X; Gao Z; Yang T; Qu Y; He L Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122954. PubMed ID: 37270975 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the effect of non-ionic surfactant alkylphenol ethoxylates on the persistence of thiabendazole on fresh produce surface. Du X; Gao Z; He L J Sci Food Agric; 2024 Mar; 104(5):2630-2640. PubMed ID: 37985216 [TBL] [Abstract][Full Text] [Related]
9. Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Yang T; Doherty J; Guo H; Zhao B; Clark JM; Xing B; Hou R; He L Anal Chem; 2019 Feb; 91(3):2093-2099. PubMed ID: 30628431 [TBL] [Abstract][Full Text] [Related]
10. Surface-Enhanced Raman Scattering Imaging Assisted by Machine Learning Analysis: Unveiling Pesticide Molecule Permeation in Crop Tissues. Wang X; Sun X; Liu Z; Zhao Y; Wu G; Wang Y; Li Q; Yang C; Ban T; Liu Y; Huang JA; Li Y Adv Sci (Weinh); 2024 Aug; 11(32):e2405416. PubMed ID: 38923362 [TBL] [Abstract][Full Text] [Related]
11. Investigation of pesticide residue removal effect of gelatinized starch using surface-enhanced Raman scattering mapping. Tang J; Zhang Q; Zhou J; Fang H; Yang H; Wang F Food Chem; 2021 Dec; 365():130448. PubMed ID: 34218109 [TBL] [Abstract][Full Text] [Related]
12. Investigation of degradation and penetration behaviors of dimethoate on and in spinach leaves using in situ SERS and LC-MS. Hou R; Tong M; Gao W; Wang L; Yang T; He L Food Chem; 2017 Dec; 237():305-311. PubMed ID: 28764001 [TBL] [Abstract][Full Text] [Related]
13. In situ imaging of the spatial and temporal penetration of organic pollutants into microplastics via surface-enhanced Raman spectroscopy. Yang Y; Guo H Environ Pollut; 2023 Jul; 329():121712. PubMed ID: 37098368 [TBL] [Abstract][Full Text] [Related]
14. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. He L; Chen T; Labuza TP Food Chem; 2014 Apr; 148():42-6. PubMed ID: 24262524 [TBL] [Abstract][Full Text] [Related]
15. Generalizing routes of plant exposure to pesticides by plant uptake models to assess pesticide application efficiency. Zhang X; Li Z Ecotoxicol Environ Saf; 2023 Jun; 262():115145. PubMed ID: 37327522 [TBL] [Abstract][Full Text] [Related]
16. Health risk for children and adults consuming apples with pesticide residue. Lozowicka B Sci Total Environ; 2015 Jan; 502():184-98. PubMed ID: 25260164 [TBL] [Abstract][Full Text] [Related]
17. Surface-Enhanced Raman Scattering Detection of Pesticide Residues Using Transparent Adhesive Tapes and Coated Silver Nanorods. Jiang J; Zou S; Ma L; Wang S; Liao J; Zhang Z ACS Appl Mater Interfaces; 2018 Mar; 10(10):9129-9135. PubMed ID: 29470045 [TBL] [Abstract][Full Text] [Related]
18. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. Xu ML; Gao Y; Han XX; Zhao B J Agric Food Chem; 2017 Aug; 65(32):6719-6726. PubMed ID: 28726388 [TBL] [Abstract][Full Text] [Related]
19. SERS-based pesticide detection by using nanofinger sensors. Kim A; Barcelo SJ; Li Z Nanotechnology; 2015 Jan; 26(1):015502. PubMed ID: 25490192 [TBL] [Abstract][Full Text] [Related]
20. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants. Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]