These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. Recursive partitioning identifies greater than 4 U of packed red blood cells per hour as an improved massive transfusion definition. Moren AM; Hamptom D; Diggs B; Kiraly L; Fox EE; Holcomb JB; Rahbar MH; Brasel KJ; Cohen MJ; Bulger EM; Schreiber MA; J Trauma Acute Care Surg; 2015 Dec; 79(6):920-4. PubMed ID: 26680135 [TBL] [Abstract][Full Text] [Related]
65. Activation of Massive Transfusion for Elderly Trauma Patients. Murry JS; Zaw AA; Hoang DM; Mehrzadi D; Tran D; Nuno M; Bloom M; Melo N; Margulies DR; Ley EJ Am Surg; 2015 Oct; 81(10):945-9. PubMed ID: 26463286 [TBL] [Abstract][Full Text] [Related]
66. Multicenter study of crystalloid boluses and transfusion in pediatric trauma-When to go to blood? Polites SF; Nygaard RM; Reddy PN; Zielinski MD; Richardson CJ; Elsbernd TA; Petrun BM; Weinberg SL; Murphy S; Potter DD; Klinkner DB; Moir CR J Trauma Acute Care Surg; 2018 Jul; 85(1):108-112. PubMed ID: 29538238 [TBL] [Abstract][Full Text] [Related]
67. Evaluation of massive transfusion protocol practices by type of trauma at a level I trauma center. Givergis R; Munnangi S; Fayaz M Fomani K; Boutin A; Zapata LC; Angus LG Chin J Traumatol; 2018 Oct; 21(5):261-266. PubMed ID: 29776837 [TBL] [Abstract][Full Text] [Related]
68. Changing patterns of in-hospital deaths following implementation of damage control resuscitation practices in US forward military treatment facilities. Langan NR; Eckert M; Martin MJ JAMA Surg; 2014 Sep; 149(9):904-12. PubMed ID: 25029432 [TBL] [Abstract][Full Text] [Related]
69. Impact of hypocalcemia on mortality in pediatric trauma patients who require transfusion. Abou Khalil E; Feeney E; Morgan KM; Spinella PC; Gaines BA; Leeper CM J Trauma Acute Care Surg; 2024 Aug; 97(2):242-247. PubMed ID: 38587878 [TBL] [Abstract][Full Text] [Related]
70. The Extremity/Mechanism/Shock Index/GCS (EMS-G) score: A novel pre-hospital scoring system for early and appropriate MTP activation. Kovar A; Carmichael H; McIntyre RC; Mago J; Gladden AH; Peltz ED; Wright FL Am J Surg; 2019 Dec; 218(6):1195-1200. PubMed ID: 31564406 [TBL] [Abstract][Full Text] [Related]
71. Pre-hospital shock index correlates with transfusion, resource utilization and mortality; The role of patient first vitals. Jehan F; Con J; McIntyre M; Khan M; Azim A; Prabhakaran K; Latifi R Am J Surg; 2019 Dec; 218(6):1169-1174. PubMed ID: 31540684 [TBL] [Abstract][Full Text] [Related]
72. Decreased mortality in patients with isolated severe blunt traumatic brain injury receiving higher plasma to packed red blood cells transfusion ratios. Haltmeier T; Benjamin E; Gruen JP; Shulman IA; Lam L; Inaba K; Demetriades D Injury; 2018 Jan; 49(1):62-66. PubMed ID: 28807428 [TBL] [Abstract][Full Text] [Related]
73. Outcomes After Massive Transfusion in Trauma Patients: Variability Among Trauma Centers. Hamidi M; Zeeshan M; Kulvatunyou N; Adun E; O'Keeffe T; Zakaria ER; Gries L; Joseph B J Surg Res; 2019 Feb; 234():110-115. PubMed ID: 30527461 [TBL] [Abstract][Full Text] [Related]
74. Shock index and pulse pressure as triggers for massive transfusion. Zhu CS; Cobb D; Jonas RB; Pokorny D; Rani M; Cotner-Pouncy T; Oliver J; Cap A; Cestero R; Nicholson SE; Eastridge BJ; Jenkins DH J Trauma Acute Care Surg; 2019 Jul; 87(1S Suppl 1):S159-S164. PubMed ID: 31246921 [TBL] [Abstract][Full Text] [Related]
75. Lactate as a mediator of prehospital plasma mortality reduction in hemorrhagic shock. Canton SP; Lutfi W; Daley BJ; Miller RS; Harbrecht BG; Claridge JA; Phelan HA; Guyette FX; Sperry JL; Brown JB J Trauma Acute Care Surg; 2021 Jul; 91(1):186-191. PubMed ID: 33797485 [TBL] [Abstract][Full Text] [Related]
76. Severity of hemorrhage and the survival benefit associated with plasma: Results from a randomized prehospital plasma trial. Anto VP; Guyette FX; Brown J; Daley B; Miller R; Harbrecht B; Claridge J; Phelan H; Neal M; Forsythe R; Zuckerbraun B; Sperry J; J Trauma Acute Care Surg; 2020 Jan; 88(1):141-147. PubMed ID: 31688793 [TBL] [Abstract][Full Text] [Related]
77. Prospective identification of patients at risk for massive transfusion: an imprecise endeavor. Vandromme MJ; Griffin RL; McGwin G; Weinberg JA; Rue LW; Kerby JD Am Surg; 2011 Feb; 77(2):155-61. PubMed ID: 21337871 [TBL] [Abstract][Full Text] [Related]
78. Clearly defining pediatric massive transfusion: cutting through the fog and friction with combat data. Neff LP; Cannon JW; Morrison JJ; Edwards MJ; Spinella PC; Borgman MA J Trauma Acute Care Surg; 2015 Jan; 78(1):22-8; discussion 28-9. PubMed ID: 25539199 [TBL] [Abstract][Full Text] [Related]
79. The Effect of Evolving Fluid Resuscitation on the Outcome of Severely Injured Patients: An 8-year Experience at a Tertiary Trauma Center. Brinck T; Handolin L; Lefering R Scand J Surg; 2016 Jun; 105(2):109-16. PubMed ID: 25989810 [TBL] [Abstract][Full Text] [Related]
80. Relationship between Obesity and Massive Transfusion Needs in Trauma Patients, and Validation of TASH Score in Obese Population: A Retrospective Study on 910 Trauma Patients. De Jong A; Deras P; Martinez O; Latry P; Jaber S; Capdevila X; Charbit J PLoS One; 2016; 11(3):e0152109. PubMed ID: 27010445 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]