BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 27712989)

  • 21. Using nitroxide spin labels. How to obtain T1e from continuous wave electron paramagnetic resonance spectra at all rotational rates.
    Haas DA; Mailer C; Robinson BH
    Biophys J; 1993 Mar; 64(3):594-604. PubMed ID: 8386009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of T1-spin-lattice relaxation time in a two-level system by continuous wave multiquantum electron paramagnetic resonance spectroscopy in a presence of tetrachromatic microwave irradiation.
    Dutka M; Gurbiel RJ; KozioĊ‚ J; Froncisz W
    J Magn Reson; 2004 Oct; 170(2):220-7. PubMed ID: 15388084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron spin-lattice relaxation in radicals containing two methyl groups, generated by gamma-irradiation of polycrystalline solids.
    Harbridge JR; Eaton SS; Eaton GR
    J Magn Reson; 2002 Dec; 159(2):195-206. PubMed ID: 12482700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of rotational molecular motion by time-resolved saturation transfer electron paramagnetic resonance.
    Fajer P; Thomas DD; Feix JB; Hyde JS
    Biophys J; 1986 Dec; 50(6):1195-202. PubMed ID: 3026503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of saturation transfer electron paramagnetic resonance spectra of a spin-labeled integral membrane protein, band 3, in terms of the uniaxial rotational diffusion model.
    Hustedt EJ; Beth AH
    Biophys J; 1995 Oct; 69(4):1409-23. PubMed ID: 8534811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels.
    Kusumi A; Subczynski WK; Hyde JS
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1854-8. PubMed ID: 6952236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group.
    Kuzhelev AA; Strizhakov RK; Krumkacheva OA; Polienko YF; Morozov DA; Shevelev GY; Pyshnyi DV; Kirilyuk IA; Fedin MV; Bagryanskaya EG
    J Magn Reson; 2016 May; 266():1-7. PubMed ID: 26987109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data.
    Hustedt EJ; Smirnov AI; Laub CF; Cobb CE; Beth AH
    Biophys J; 1997 Apr; 72(4):1861-77. PubMed ID: 9083690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I.
    Maly T; MacMillan F; Zwicker K; Kashani-Poor N; Brandt U; Prisner TF
    Biochemistry; 2004 Apr; 43(13):3969-78. PubMed ID: 15049704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin-labeled small unilamellar vesicles with the
    Mainali L; Vasquez-Vivar J; Hyde JS; Subczynski WK
    Appl Magn Reson; 2015 Aug; 46(8):885-895. PubMed ID: 26441482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping of collision frequencies for stearic acid spin labels by saturation-recovery electron paramagnetic resonance.
    Yin JJ; Feix JB; Hyde JS
    Biophys J; 1990 Sep; 58(3):713-20. PubMed ID: 2169919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the orientation of a band 3 affinity spin-label relative to the membrane normal axis of the human erythrocyte.
    Hustedt EJ; Beth AH
    Biochemistry; 1996 May; 35(21):6944-54. PubMed ID: 8639646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance.
    Yin JJ; Pasenkiewicz-Gierula M; Hyde JS
    Proc Natl Acad Sci U S A; 1987 Feb; 84(4):964-8. PubMed ID: 3029766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of relaxation enhancement of spin labels in membranes by paramagnetic ion salts: dependence on 3d and 4f ions and on the anions.
    Livshits VA; Dzikovski BG; Marsh D
    J Magn Reson; 2001 Feb; 148(2):221-37. PubMed ID: 11237628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion Coefficient and Relaxation Time of Aliphatic Spin Probes in a Unique Triglyceride Membrane.
    Nakagawa K
    Langmuir; 2003 Jun; 19(12):5078-5082. PubMed ID: 27676262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures.
    Raitsimring A; Dalaloyan A; Collauto A; Feintuch A; Meade T; Goldfarb D
    J Magn Reson; 2014 Nov; 248():71-80. PubMed ID: 25442776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; van Wyk JA
    Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution of the nitroxide spin-label spectral overlap problem using pulse electron spin resonance.
    Yin JJ; Feix JB; Hyde JS
    Biophys J; 1988 Apr; 53(4):525-31. PubMed ID: 2838099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifrequency Pulsed EPR and the Characterization of Molecular Dynamics.
    Eaton SS; Eaton GR
    Methods Enzymol; 2015; 563():37-58. PubMed ID: 26478481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics.
    Subczynski WK; Widomska J; Raguz M; Pasenkiewicz-Gierula M
    Oxygen (Basel); 2022 Sep; 2(3):295-316. PubMed ID: 36852103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.