These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. X-ray structure of Arthrobacter globiformis M30 ketose 3-epimerase for the production of D-allulose from D-fructose. Yoshida H; Yoshihara A; Gullapalli PK; Ohtani K; Akimitsu K; Izumori K; Kamitori S Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):669-676. PubMed ID: 30279320 [TBL] [Abstract][Full Text] [Related]
3. Expression and characterization of thermostable D-allulose 3-epimerase from Arthrobacter psychrolactophilus (Ap DAEase) with potential catalytic activity for bioconversion of D-allulose from d-fructose. Laksmi FA; Nirwantono R; Nuryana I; Agustriana E Int J Biol Macromol; 2022 Aug; 214():426-438. PubMed ID: 35750099 [TBL] [Abstract][Full Text] [Related]
4. Thermostability Improvement of the d-Allulose 3-Epimerase from Dorea sp. CAG317 by Site-Directed Mutagenesis at the Interface Regions. Zhang W; Zhang Y; Huang J; Chen Z; Zhang T; Guang C; Mu W J Agric Food Chem; 2018 Jun; 66(22):5593-5601. PubMed ID: 29762031 [TBL] [Abstract][Full Text] [Related]
5. Biochemical identification of a hyperthermostable l-ribulose 3-epimerase from Labedella endophytica and its application for d-allulose bioconversion. Chen D; Chen J; Liu X; Guang C; Zhang W; Mu W Int J Biol Macromol; 2021 Oct; 189():214-222. PubMed ID: 34428486 [TBL] [Abstract][Full Text] [Related]
6. A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization. Jia M; Mu W; Chu F; Zhang X; Jiang B; Zhou LL; Zhang T Appl Microbiol Biotechnol; 2014 Jan; 98(2):717-25. PubMed ID: 23644747 [TBL] [Abstract][Full Text] [Related]
7. Improved thermostability of D-allulose 3-epimerase from Clostridium bolteae ATCC BAA-613 by proline residue substitution. Wang H; Chen J; Zhao J; Li H; Wei X; Liu J Protein Expr Purif; 2022 Nov; 199():106145. PubMed ID: 35863720 [TBL] [Abstract][Full Text] [Related]
8. Functionalized polyhydroxyalkanoate nano-beads as a stable biocatalyst for cost-effective production of the rare sugar d-allulose. Ran G; Tan D; Zhao J; Fan F; Zhang Q; Wu X; Fan P; Fang X; Lu X Bioresour Technol; 2019 Oct; 289():121673. PubMed ID: 31260936 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a recombinant d-allulose 3-epimerase from Agrobacterium sp. ATCC 31749 and identification of an important interfacial residue. Tseng WC; Chen CN; Hsu CT; Lee HC; Fang HY; Wang MJ; Wu YH; Fang TY Int J Biol Macromol; 2018 Jun; 112():767-774. PubMed ID: 29427680 [TBL] [Abstract][Full Text] [Related]
10. D-Allulose Production from D-Fructose by Permeabilized Recombinant Cells of Corynebacterium glutamicum Cells Expressing D-Allulose 3-Epimerase Flavonifractor plautii. Park CS; Kim T; Hong SH; Shin KC; Kim KR; Oh DK PLoS One; 2016; 11(7):e0160044. PubMed ID: 27467527 [TBL] [Abstract][Full Text] [Related]
11. Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor. Li Z; Hu Y; Yu C; Fei K; Shen L; Liu Y; Nakanishi H Biotechnol J; 2024 Aug; 19(8):e2400280. PubMed ID: 39167550 [TBL] [Abstract][Full Text] [Related]
13. Production of d-allulose from d-glucose by Escherichia coli transformant cells co-expressing d-glucose isomerase and d-psicose 3-epimerase genes. Zhang W; Li H; Jiang B; Zhang T; Mu W J Sci Food Agric; 2017 Aug; 97(10):3420-3426. PubMed ID: 28009059 [TBL] [Abstract][Full Text] [Related]
14. Identification of hyperthermophilic D-allulose 3-epimerase from Thermotoga sp. and its application as a high-performance biocatalyst for D-allulose synthesis. Shen JD; Xu BP; Yu TL; Fei YX; Cai X; Huang LG; Jin LQ; Liu ZQ; Zheng YG Bioprocess Biosyst Eng; 2024 Jun; 47(6):841-850. PubMed ID: 38676737 [TBL] [Abstract][Full Text] [Related]
15. Improving the enzyme property of D-allulose 3-epimerase from a thermophilic organism of Halanaerobium congolense through rational design. Zhu Z; Li L; Zhang W; Li C; Mao S; Lu F; Qin HM Enzyme Microb Technol; 2021 Sep; 149():109850. PubMed ID: 34311887 [TBL] [Abstract][Full Text] [Related]
16. Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a D-psicose-3-epimerase gene from Agrobacterium tumefaciens for D-allulose production. Yang P; Zhu X; Zheng Z; Mu D; Jiang S; Luo S; Wu Y; Du M World J Microbiol Biotechnol; 2018 Apr; 34(5):65. PubMed ID: 29687334 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of D-allulose 3-epimerase into magnetic metal-organic framework nanoparticles for efficient biocatalysis. Xue K; Liu CL; Yang Y; Liu X; Zhan J; Bai Z World J Microbiol Biotechnol; 2022 Jun; 38(8):144. PubMed ID: 35748959 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the thermostability of D-allulose 3-epimerase from Clostridium cellulolyticum H10 via a dual-enzyme screening system. Feng Y; Pu Z; Zhu L; Wu M; Yang L; Yu H; Lin J Enzyme Microb Technol; 2022 Sep; 159():110054. PubMed ID: 35526470 [TBL] [Abstract][Full Text] [Related]
20. Redesign of a novel D-allulose 3-epimerase from Staphylococcus aureus for thermostability and efficient biocatalytic production of D-allulose. Zhu Z; Gao D; Li C; Chen Y; Zhu M; Liu X; Tanokura M; Qin HM; Lu F Microb Cell Fact; 2019 Mar; 18(1):59. PubMed ID: 30909913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]