These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27713183)

  • 1. Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires.
    Zhang W; Yang F; Messing ME; Mergenthaler K; Pistol ME; Deppert K; Samuelson L; Magnusson MH; Yartsev A
    Nanotechnology; 2016 Nov; 27(45):455704. PubMed ID: 27713183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon.
    Songmuang R; Giang le TT; Bleuse J; Den Hertog M; Niquet YM; Dang le S; Mariette H
    Nano Lett; 2016 Jun; 16(6):3426-33. PubMed ID: 27081785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires.
    Chen SL; Chen WM; Ishikawa F; Buyanova IA
    Sci Rep; 2015 Jun; 5():11653. PubMed ID: 26100755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Optically-Generated Carriers in Si (100) and Si (111) Substrate-Grown GaAs/AlGaAs Core-Shell Nanowires.
    Delos Santos R; Ibañes JJ; Balgos MH; Jaculbia R; Afalla JP; Bailon-Somintac M; Estacio E; Salvador A; Somintac A; Que C; Tsuzuki S; Yamamoto K; Tani M
    Nanoscale Res Lett; 2015 Dec; 10(1):1050. PubMed ID: 26293496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires.
    Zhang W; Lehmann S; Mergenthaler K; Wallentin J; Borgström MT; Pistol ME; Yartsev A
    Nano Lett; 2015 Nov; 15(11):7238-44. PubMed ID: 26421505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires.
    Boland JL; Tütüncüoglu G; Gong JQ; Conesa-Boj S; Davies CL; Herz LM; Fontcuberta I Morral A; Johnston MB
    Nanoscale; 2017 Jun; 9(23):7839-7846. PubMed ID: 28555685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer.
    Kaveh M; Gao Q; Jagadish C; Ge J; Duscher G; Wagner HP
    Nanotechnology; 2016 Dec; 27(48):485204. PubMed ID: 27811405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of Hole Concentrations in Zn Doped GaAs Nanowires.
    Johansson J; Ghasemi M; Sivakumar S; Mergenthaler K; Persson AR; Metaferia W; Magnusson MH
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33339116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.
    Li F; Xie X; Gao Q; Tan L; Zhou Y; Yang Q; Ma J; Fu L; Tan HH; Jagadish C
    Nanotechnology; 2018 Jun; 29(22):225703. PubMed ID: 29451131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors.
    Li F; Li Z; Tan L; Zhou Y; Ma J; Lysevych M; Fu L; Tan HH; Jagadish C
    Nanotechnology; 2017 Mar; 28(12):125702. PubMed ID: 28140378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires.
    Su X; Zeng X; Němec H; Zou X; Zhang W; Borgström MT; Yartsev A
    Nanoscale; 2019 Oct; 11(40):18550-18558. PubMed ID: 31363719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.
    Zhou HL; Hoang TB; Dheeraj DL; van Helvoort AT; Liu L; Harmand JC; Fimland BO; Weman H
    Nanotechnology; 2009 Oct; 20(41):415701. PubMed ID: 19755725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier Recombination Processes in Gallium Indium Phosphide Nanowires.
    Zhang W; Zeng X; Su X; Zou X; Mante PA; Borgström MT; Yartsev A
    Nano Lett; 2017 Jul; 17(7):4248-4254. PubMed ID: 28654299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field.
    Wu Y; Dai Y; Jiang S; Ma C; Lin Y; Du D; Wu Y; Ding H; Zhang Q; Pan N; Wang X
    Phys Chem Chem Phys; 2017 Apr; 19(14):9537-9544. PubMed ID: 28345696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.
    Ghosh R; Giri PK; Imakita K; Fujii M
    Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility.
    Boland JL; Conesa-Boj S; Parkinson P; Tütüncüoglu G; Matteini F; Rüffer D; Casadei A; Amaduzzi F; Jabeen F; Davies CL; Joyce HJ; Herz LM; Fontcuberta i Morral A; Johnston MB
    Nano Lett; 2015 Feb; 15(2):1336-42. PubMed ID: 25602841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman characterization of single-crystalline Ga
    Corrêa GB; Kumar S; Paschoal W; Devi C; Jacobsson D; Johannes A; Ronning C; Pettersson H; Paraguassu W
    Nanotechnology; 2019 Aug; 30(33):335202. PubMed ID: 31018190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.
    Boland JL; Casadei A; Tütüncüoglu G; Matteini F; Davies CL; Jabeen F; Joyce HJ; Herz LM; Fontcuberta I Morral A; Johnston MB
    ACS Nano; 2016 Apr; 10(4):4219-27. PubMed ID: 26959350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GaAs Nanowire pn-Junctions Produced by Low-Cost and High-Throughput Aerotaxy.
    Barrigón E; Hultin O; Lindgren D; Yadegari F; Magnusson MH; Samuelson L; Johansson LIM; Björk MT
    Nano Lett; 2018 Feb; 18(2):1088-1092. PubMed ID: 29290120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical growth of core-shell III-V nanowires for solar cells application.
    Kim DY; Bae MH; Shin JC; Kim YJ; Lee YJ; Choi KJ; Seong TY; Choi WJ
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2913-8. PubMed ID: 24734710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.